Answer:
Explanation:
a )
pH = - log[ H⁺]
8.26 = - log[ H⁺]
[ H⁺] = 10⁻⁸°²⁶ mole / l
= 5.49 x 10⁻⁹ moles / l
[ H⁺] [OH⁻] = 10⁻¹⁴
[OH⁻] = 10⁻¹⁴ / 5.49 x 10⁻⁹
= .182 x 10⁻⁵ moles / l
b )
10.25 = - log[ H⁺]
[ H⁺] = 10⁻¹⁰°²⁵ mole / l
= 5.62 x 10⁻¹¹ moles / l
[ H⁺] [OH⁻] = 10⁻¹⁴
[OH⁻] = 10⁻¹⁴ / 5.62 x 10⁻¹¹
= .178 x 10⁻³ moles / l
c )
4.65 = - log[ H⁺]
[ H⁺] = 10⁻⁴°⁶⁵ mole / l
= 2.24 x 10⁻⁵ moles / l
[ H⁺] [OH⁻] = 10⁻¹⁴
[OH⁻] = 10⁻¹⁴ / 2.24 x 10⁻⁵
= .4464 x 10⁻⁹ moles / l
Answer:
Part a: The rate of the equation for 1st order reaction is given as ![Rate=k[H_2O_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BH_2O_2%5D)
Part b: The integrated Rate Law is given as ![[H_2O_2]=[H_2O_2]_0 e^{-kt}](https://tex.z-dn.net/?f=%5BH_2O_2%5D%3D%5BH_2O_2%5D_0%20e%5E%7B-kt%7D)
Part c: The value of rate constant is 
Part d: Concentration after 4000 s is 0.043 M.
Explanation:
By plotting the relation between the natural log of concentration of
, the graph forms a straight line as indicated in the figure attached. This indicates that the reaction is of 1st order.
Part a
Rate Law
The rate of the equation for 1st order reaction is given as
![Rate=k[H_2O_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BH_2O_2%5D)
Part b
Integrated Rate Law
The integrated Rate Law is given as
![[H_2O_2]=[H_2O_2]_0 e^{-kt}](https://tex.z-dn.net/?f=%5BH_2O_2%5D%3D%5BH_2O_2%5D_0%20e%5E%7B-kt%7D)
Part c
Value of the Rate Constant
Value of the rate constant is given by using the relation between 1st two observations i.e.
t1=0, M1=1.00
t2=120 s , M2=0.91
So k is calculated as

The value of rate constant is 
Part d
Concentration after 4000 s is given as

Concentration after 4000 s is 0.043 M.
Answer:
At equilibrium:
[H2] = 0.005 M
[Br2] = 0.105 M
[HBr] = 0.189 M
Explanation:
H2(g) + Br2(g) ⇄ 2HBr
an "x" value will be used from reactant to produced "2x"
so at equilibrium:
[H2] = 0.1 - x
[Br2] = 0.2 - x
[HBr] = 2x
we know that Kc=[HBr]²/[H2][Br2]
Thus 62.5 = (2x)²/(0.1-x)(0.2-x)
this generate a quadratic equation: 58.5x² - 18.75x + 1.25 = 0
the x₁ = 0.23 x₂ = 0.09457
we pick 0.09457 because the two reactants can not make more than what they have. x₁ is higher than both initial reactant concentration
Then we substitute the "x₂" value at equilibrium:
[H2] = 0.1-0.09457 = 0.005 M
[Br2] = 0.2-0.09457 = 0.105 M
[HBr] = 2*0.09457 = 0.189 M
Answer:
Noble gases
Explanation:
Noble gases are nonreactive, nonmetallic elements in group 18 of the periodic table. As you can see in the periodic table in the figure below, noble gases include helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and radon (Rn).18 Jun 2021
Explanation:
miscible liquids: water and alcohol
immiscible liquids: water and oil