Answer:

Explanation:
Hello!
In this case, since we are given the volume of N2O3 and pressure and temperature for the STP (1.00 atm and 273.15 K), we can compute the moles, considering the ideal gas equation as shown below:

Now, by using the Avogadro's number it is possible to compute the molecules of this case in 1.56 moles:

Best regards!
The pressure in the flask is 3.4 atm.
<em>pV</em> = <em>nRT
</em>
<em>T</em> = (20 + 273.15) K = 293.15 K
<em>p</em> = (<em>nRT</em>)/<em>V</em> = (1.4 mol × 0.082 06 L·atm·K⁻¹mol⁻¹ × 293.15 K)/10 L = 3.4 atm
Answer:
When two substances having different temperatures are introduced or kept together, heat energy, Q, flows from a substance at higher temperature to a substance at lower temperature. Also, heat continues to be transferred until their temperatures are equalized, at which point the substances are in thermal equilibrium. In a closed system, the amount of energy lost is equal to but opposite the amount of energy gained.
Explanation:
Answer:(1) 6 sodium ions
(2)The movement of iodide ions occurs in the same direction as the sodium ions.
Explanation: Sodium-iodide symporter actively transports 2 sodium ions together with one iodide ions across the basement membrane into the thyroid follicular cells.(therefore for production of a single molecule of T3 3×2=6 sodium ions)This system utilises the concentration of sodium ions so that iodide ions can move against its concentration gradient.
Answer:
125 cubic meters
Explanation:
Subtract 375-250=125 cubic meters