Hey there!
To calculate the percent by mass of the Ca(NO₃)₂ we need to find the total mass first by adding.
896.92 + 22.63 = 919.55
In total, the solution is 919.55 grams.
To find the percent of Ca(NO₃)₂ in the solution, divide the mass of Ca(NO₃)₂ by the total mass and multiply by 100.
22.63 ÷ 919.55 = 0.0246
0.0246 x 100 = 2.46
Ca(NO₃)₂ makes up 2.46% of the solution.
Hope this helps!
<span>Mutation. Either exchanging a Purine with another Purine, Pyrimidin with another Pyrimidin, or completely exchanging a Purine with a Pyrimidin or vice versa. Point- or Frameshift-Mutation.</span>
t1/2 = ln 2 / λ = 0.693 / λ
Where t1/2 is the half life of the element and λ is decay constant.
32 = 0.693 / λ
λ = 0.693 / 32 (1)
Nt = Nο eΛ(-λt) (2)
Where Nt is atoms at t time, λ is decay constant and t is the time taken.
t = 1.9 hours = 1.9 x 60 min
From (1) and (2),
Nt = Nο e⁻Λ(0.693/32)*1.9*60
Nt = 0.085Nο
Percentage = (Nt/Nο) x 100%
= (0.085Nο/Nο) x 100%
= 8.5%
Hence, Percentage of remaining atoms with the original sample is 8.5%
4C₃H₅(NO₃)₃
------> 12CO₂
+ 6N₂
+ 10H₂O
+ O₂
mol of CO₂ = 
= 
mol ratio of CO₂ : C₃H₅(NO₃)₃
12 : 4
∴ if mole of CO₂ = 0.568 mol
then " " C₃H₅(NO₃)₃ = 
= 0.189 mol
∴ mass of nitroglycerin = mole * Mr
= 0.189 mol * 227.0995 g / mol
= 43.00 g
When the phosphate groups of the single nucleotides combine to form the backbone of the nucleic acid, energy is released. This energy is used for polymerization.