Answer:

Explanation:
Hello,
In this case, for a concentration of 0.42 M of benzoic acid whose Ka is 6.3x10⁻⁵ in 0.33 M sodium benzoate, we use the Henderson-Hasselbach equation to compute the required pH:
![pH=pKa+log(\frac{[base]}{[acid]} )](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29)
Whereas the concentration of the base is 0.33 M and the concentration of the acid is 0.42 M, thereby, we obtain:
![pH=-log(Ka)+log(\frac{[base]}{[acid]} )\\\\pH=-log(6.3x10^{-5})+log(\frac{0.33M}{0.42M} )\\\\pH=4.1](https://tex.z-dn.net/?f=pH%3D-log%28Ka%29%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29%5C%5C%5C%5CpH%3D-log%286.3x10%5E%7B-5%7D%29%2Blog%28%5Cfrac%7B0.33M%7D%7B0.42M%7D%20%29%5C%5C%5C%5CpH%3D4.1)
Regards.
Answer:
MnO2 M n O 2 is an ionic substance without any oxo-anions, therefore its name has the -ide ending.
Answer:
He2 molecule contains 4 electrons. Each atom gives 2 electrons in 1s orbitals. This way 2 (1s) orbitals combine to give 2 molecular orbitals viz. ... This indicates that there is no bond formation between 2 HE atoms and hence the He2 molecule does not exist.
Explanation:
Answer: 0.0164 molar concentration of hydrochloric acid in the resulting solution.
Explanation:
1) Molarity of 0.250 L HCl solution : 0.0328 M

Moles of HCl in 0.250 L solution = 0.0082 moles
2) Molarity of 0.100 L NaOH solution : 0.0245 M

Moles of NaOH in 0.100 L solution = 0.00245 moles
3) Concentration of hydrochloric acid in the resulting solution.
0.00245 moles of NaOH will neutralize 0.00245 moles of HCl out of 0.0082 moles of HCl.
Now the new volume of the solution = 0.100 L +0.250 L = 0.350 L
Moles of HCl left un-neutralized = 0.0082 moles - 0.00245 moles = 0.00575 moles

Molarity of HCl left un-neutralized :
0.0164 molar concentration of hydrochloric acid in the resulting solution.