Answer:
11
Step-by-step explanation:
all u need to do is to cube root 1331, because it is a cube. hope i helped.
I’m not sure what this question is asking, but I’ll write an equation of this circle you are describing. Here, the x coordinate of the center is h, the y coordinate is k, and radius is r in the equation : (x-h)^2+(y-k)^2=r^2, meaning the equation in this situation is the following: (x-2)^2+(y-8)^2=9
We start with the expression at the left of the equation.
We can combine the terms as:
![\begin{gathered} \frac{2+\sqrt[]{3}}{\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}}}-\frac{2-\sqrt[]{3}}{\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}}} \\ \frac{2+\sqrt[]{3}}{\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}}}\cdot\frac{(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})}-\frac{2-\sqrt[]{3}}{\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}}}\cdot\frac{(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})} \\ \frac{(2+\sqrt[]{3})\cdot(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})-(2-\sqrt[]{3})\cdot(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7B2%2B%5Csqrt%5B%5D%7B3%7D%7D%7B%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D-%5Cfrac%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7B%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D%20%5C%5C%20%5Cfrac%7B2%2B%5Csqrt%5B%5D%7B3%7D%7D%7B%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D%5Ccdot%5Cfrac%7B%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D-%5Cfrac%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7B%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D%5Ccdot%5Cfrac%7B%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%20%5C%5C%20%5Cfrac%7B%282%2B%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29-%282-%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%20%5Cend%7Bgathered%7D)
We can now apply the distributive property for the both the numerator and denominator. We can see also that the denominator is the expansion of the difference of squares:
![\begin{gathered} \frac{(2+\sqrt[]{3})\cdot(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})-(2-\sqrt[]{3})\cdot(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{(\sqrt[]{2})^2-(\sqrt[]{2-\sqrt[]{3}}))^2} \\ \frac{(2+\sqrt[]{3})\cdot(\sqrt[]{2}-\sqrt[]{2-\sqrt[]{3}})+(\sqrt[]{3}-2)\cdot(\sqrt[]{2}+\sqrt[]{2-\sqrt[]{3}})}{2^{}-(2-\sqrt[]{3})^{}} \\ \frac{\sqrt[]{2}\cdot(2+\sqrt[]{3})-\sqrt[]{2-\sqrt[]{3}}\cdot(2+\sqrt[]{3})+\sqrt[]{2}\cdot(\sqrt[]{3}-2)+\sqrt[]{2-\sqrt[]{3}}\cdot(\sqrt[]{3}-2)}{2-2+\sqrt[]{3}} \\ \frac{\sqrt[]{2}(2+\sqrt[]{3}+\sqrt[]{3}-2)+\sqrt[]{2-\sqrt[]{3}}(-2-\sqrt[]{3}+\sqrt[]{3}-2)}{\sqrt[]{3}} \\ \frac{\sqrt[]{2}(2\sqrt[]{3})+\sqrt[]{2-\sqrt[]{3}}(-4)}{\sqrt[]{3}} \\ 2\sqrt[]{2}-4\frac{\sqrt[]{2-\sqrt[]{3}}}{\sqrt[]{3}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7B%282%2B%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29-%282-%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B%28%5Csqrt%5B%5D%7B2%7D%29%5E2-%28%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%29%5E2%7D%20%5C%5C%20%5Cfrac%7B%282%2B%5Csqrt%5B%5D%7B3%7D%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%2B%28%5Csqrt%5B%5D%7B3%7D-2%29%5Ccdot%28%5Csqrt%5B%5D%7B2%7D%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%29%7D%7B2%5E%7B%7D-%282-%5Csqrt%5B%5D%7B3%7D%29%5E%7B%7D%7D%20%5C%5C%20%5Cfrac%7B%5Csqrt%5B%5D%7B2%7D%5Ccdot%282%2B%5Csqrt%5B%5D%7B3%7D%29-%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%5Ccdot%282%2B%5Csqrt%5B%5D%7B3%7D%29%2B%5Csqrt%5B%5D%7B2%7D%5Ccdot%28%5Csqrt%5B%5D%7B3%7D-2%29%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%5Ccdot%28%5Csqrt%5B%5D%7B3%7D-2%29%7D%7B2-2%2B%5Csqrt%5B%5D%7B3%7D%7D%20%5C%5C%20%5Cfrac%7B%5Csqrt%5B%5D%7B2%7D%282%2B%5Csqrt%5B%5D%7B3%7D%2B%5Csqrt%5B%5D%7B3%7D-2%29%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%28-2-%5Csqrt%5B%5D%7B3%7D%2B%5Csqrt%5B%5D%7B3%7D-2%29%7D%7B%5Csqrt%5B%5D%7B3%7D%7D%20%5C%5C%20%5Cfrac%7B%5Csqrt%5B%5D%7B2%7D%282%5Csqrt%5B%5D%7B3%7D%29%2B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%28-4%29%7D%7B%5Csqrt%5B%5D%7B3%7D%7D%20%5C%5C%202%5Csqrt%5B%5D%7B2%7D-4%5Cfrac%7B%5Csqrt%5B%5D%7B2-%5Csqrt%5B%5D%7B3%7D%7D%7D%7B%5Csqrt%5B%5D%7B3%7D%7D%20%5Cend%7Bgathered%7D)
We then can continue rearranging this as:
ANSWER
2nd and 3rd quadrant.
EXPLANATION
The given trigonometric equation is:

The secant ratio is negative in the second and third quadrant.
But it is positive in the first and fourth quadrants.
The given secant ratio is negative.
This implies that , the solution to given equation lies in the second and third quadrant.
Based on the number of people who are older than 35 years and the people with a hemoglobin level between 9 and 11, the probability is 0.531.
<h3>What is the probability of having the required hemoglobin level?</h3>
This question does not have the relevant data attached so I will use a similar question.
The probability that a person is older than 35 and has a hemoglobin level of between 9 and 11 can be found as:
= Person who has hemoglobin level of between 9 and 11 and is above 35 years / Total number of people older than 35 years
= (162 - 40 - 76) / 162
= 0.531
Find out more on probability at brainly.com/question/251701.
#SPJ4