(-2,-2)
Since it has a negative in front of the absolute value, the graph is a downward cone.
-2x=15-7y
x=-7.5+3.5y
-3x-8y=4
-3(7.5+3.5y)-8y=4
-22.5-10.5y-8y=4
-22.5-18.5y=4
-18.5y=4+22.5
-18.5y=26.5
y=-53/35
the fraction might not be in lowest terms.
Subtract 1111 from both sides
5{e}^{{4}^{x}}=22-115e4x=22−11
Simplify 22-1122−11 to 1111
5{e}^{{4}^{x}}=115e4x=11
Divide both sides by 55
{e}^{{4}^{x}}=\frac{11}{5}e4x=511
Use Definition of Natural Logarithm: {e}^{y}=xey=x if and only if \ln{x}=ylnx=y
{4}^{x}=\ln{\frac{11}{5}}4x=ln511
: {b}^{a}=xba=x if and only if log_b(x)=alogb(x)=a
x=\log_{4}{\ln{\frac{11}{5}}}x=log4ln511
Use Change of Base Rule: \log_{b}{x}=\frac{\log_{a}{x}}{\log_{a}{b}}logbx=logablogax
x=\frac{\log{\ln{\frac{11}{5}}}}{\log{4}}x=log4logln511
Use Power Rule: \log_{b}{{x}^{c}}=c\log_{b}{x}logbxc=clogbx
\log{4}log4 -> \log{{2}^{2}}log22 -> 2\log{2}2log2
x=\frac{\log{\ln{\frac{11}{5}}}}{2\log{2}}x=2log2
Answer= −0.171
Answer:
A. The next 3 terms are —9, —11, —13
B. The sequence is Arithmetic
C. The sequence has a common difference of —2
Common difference = T2 — T1 or = T3 — T2
=T2 — T1 = —3 —(—1) = —2 or
= T3 — T2 = —5 —(—3) = —2
D. Tn = a + d(n—1)
a = first term = —1
d = Common difference = —2
n = 27
T27 = —1 + —2(27—1)
T27 = —1 + —2(26)
T27 = —1 —52
T27 = —53