Find the total cost of producing 5 widgets. Widget Wonders produces widgets. They have found that the cost, c(x), of making x widgets is a quadratic function in terms of x. The company also discovered that it costs $15.50 to produce 3 widgets, $23.50 to produce 7 widgets, and $56 to produce 12 widgets.
OK...so we have
a(7)^2 + b(7) + c = 23.50 → 49a + 7b + c = 23.50 (1)
a(3)^2 + b(3) + c = 15.50 → 9a + 3b + c = 15.50 subtracting the second equation from the first, we have
40a + 4b = 8 → 10a + b = 2 (2)
Also
a(12)^2 + b(12) + c = 56 → 144a + 12b + c = 56 and subtracting (1) from this gives us
95a + 5b = 32.50
And using(2) we have
95a + 5b = 32.50 (3)
10a + b = 2.00 multiplying the second equation by -5 and adding this to (3) ,we have
45a = 22.50 divide both sides by 45 and a = 1/2 and using (2) to find b, we have
10(1/2) + b = 2
5 + b = 2 b = -3
And we can use 9a + 3b + c = 15.50 to find "c"
9(1/2) + 3(-3) + c = 15.50
9/2 - 9 + c = 15.50
-4.5 + c = 15.50
c = 20
So our function is
c(x) = (1/2)x^2 - (3)x + 20
And the cost to produce 5 widgets is = $17.50
Answer:
5/7 of the picture
Step-by-step explanation:
X= 130 degrees since 180 is the total minus 50 from above
hello!
so the answer that you put there is actually wrong and i'll tell you why and how to do it
so since you are adding the two:
-8x + 9x = x (so you got this part right)
-12 + 4 = -8 (this is where you got it wrong, -12 added 4 goes up in value to -8)
so the final answer is x - 8
i hope this helped and have a nice day!