Answer:
exactly one, 0's, triangular matrix, product and 1.
Step-by-step explanation:
So, let us first fill in the gap in the question below. Note that the capitalized words are the words to be filled in the gap and the ones in brackets too.
"An elementary ntimesn scaling matrix with k on the diagonal is the same as the ntimesn identity matrix with EXACTLY ONE of the (0's) replaced with some number k. This means it is TRIANGULAR MATRIX, and so its determinant is the PRODUCT of its diagonal entries. Thus, the determinant of an elementary scaling matrix with k on the diagonal is (1).
Here, one of the zeros in the identity matrix will surely be replaced by one. That is to say, the determinants = 1 × 1 × 1 => 1. Thus, it is a a triangular matrix.
It is equivalent to 16 cm
Answer:
Step-by-step explanation:
Given that there are 3 sets such that there are 100 elements in A1, 1000 in A2, and 10,000 in A3
a) If A1 ⊆ A2 and A2 ⊆ A3
then union will contain the same number of elements as that of A3
i.e. 
b) If the sets are pairwise disjoint.
union will contain the sum of elements of each set

c) If there are two elements common to each pair of sets and one element in all three sets
We subtract common elements pairwise and add common element in 3
i.e. 
Answer:
x = 13
Step-by-step explanation:
y=50
50 = 5x - 15
50 + 15 = 5x
65 = 5x
65/5 = 5x/5
13 = x