Answer:
Pacific Ocean at a grand 63 million square miles
Step-by-step explanation:
Answer:

Step-by-step explanation:
Let 
![m=(y^3)^{\frac{1}{2}}\\\\m=y^{3\times \frac{1}{2}}\ \ \ \ \ \ \ \ \ [as\ (x^a)^b=x^{ab}]\\\\m=y^{\frac{3}{2}](https://tex.z-dn.net/?f=m%3D%28y%5E3%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C%5C%5Cm%3Dy%5E%7B3%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%7D%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5Bas%5C%20%28x%5Ea%29%5Eb%3Dx%5E%7Bab%7D%5D%5C%5C%5C%5Cm%3Dy%5E%7B%5Cfrac%7B3%7D%7B2%7D)
Answer:
Step-by-step explanation:
The mean SAT score is
, we are going to call it \mu since it's the "true" mean
The standard deviation (we are going to call it
) is

Next they draw a random sample of n=70 students, and they got a mean score (denoted by
) of 
The test then boils down to the question if the score of 613 obtained by the students in the sample is statistically bigger that the "true" mean of 600.
- So the Null Hypothesis 
- The alternative would be then the opposite 
The test statistic for this type of test takes the form

and this test statistic follows a normal distribution. This last part is quite important because it will tell us where to look for the critical value. The problem ask for a 0.05 significance level. Looking at the normal distribution table, the critical value that leaves .05% in the upper tail is 1.645.
With this we can then replace the values in the test statistic and compare it to the critical value of 1.645.

<h3>since 2.266>1.645 we can reject the null hypothesis.</h3>