41 degrees Fahrenheit is equivalent to exactly 5 degrees Celsius.
Answer:
The missing statement is ∠ACB ≅ ∠ECD
Step-by-step explanation:
Given two lines segment AC and BD bisect each other at C.
We have to prove that ΔACB ≅ ΔECD
In triangle ACB and ECD
AC=CE (Given)
BC=CD (Given)
Now to prove above two triangles congruent we need one more side or angle
so, as seen in options the angle ∠ACB ≅ ∠ECD due to vertically opposite angles
hence, the missing statement is ∠ACB ≅ ∠ECD
Answer: The answer is NO.
Step-by-step explanation: The given statement is -
If the graph of two equations are coincident lines, then that system of equations will have no solution.
We are to check whether the above statement is correct or not.
Any two equations having graphs as coincident lines are of the form -

If we take d = 1, then both the equations will be same.
Now, subtracting the second equation from first, we have

Again, we will get the first equation, which is linear in two unknown variables. So, the system will have infinite number of solutions, which consists of the points lying on the line.
For example, see the attached figure, the graphs of following two equations is drawn and they are coincident. Also, the result is again the same straight line which has infinite number of points on it. These points makes the solution for the following system.

Thus, the given statement is not correct.
In a triangle the sum of two sides is always greater than the third side.
If one side = 8 in and other two sides are equal to a positive whole number, then the smallest possible sum of the other two sides = 9 in ⇒
<span>Smallest possible perimeter = 8 + 9 = 17 in</span>