Answer:
AH=AB and GC=CB
Step-by-step explanation:
Answer:
![A)\ \ \ \ \left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]](https://tex.z-dn.net/?f=A%29%5C%20%5C%20%5C%20%5C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%26-5%5C%5C-3%262%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Given the matrix:
, it's inverse is calculated using the formula:
![\left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right]^{-1}=\frac{1}{det\left[\begin{array}{ccc}a&b\\c&d\\\end{array}\right] }\left[\begin{array}{ccc}d&-b\\-c&a\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%26b%5C%5Cc%26d%5C%5C%5Cend%7Barray%7D%5Cright%5D%5E%7B-1%7D%3D%5Cfrac%7B1%7D%7Bdet%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%26b%5C%5Cc%26d%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dd%26-b%5C%5C-c%26a%5C%5C%5Cend%7Barray%7D%5Cright%5D)
#Therefore, we calculate as;
![\frac{1}{det\left[\begin{array}{ccc}2&5\\3&8\\\end{array}\right] }\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right] \\\\\\\\\#det\left[\begin{array}{ccc}2&5\\3&8\\\end{array}\right] =1\\\\\\\\=\frac{1}{1}\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right] \\\\\\\\=\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bdet%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%265%5C%5C3%268%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%26-5%5C%5C-3%262%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C%5C%5C%5C%23det%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%265%5C%5C3%268%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D1%5C%5C%5C%5C%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B1%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%26-5%5C%5C-3%262%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%26-5%5C%5C-3%262%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Hence, the inverse of the matrix is ![\left[\begin{array}{ccc}8&-5\\-3&2\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%26-5%5C%5C-3%262%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Answer:
d. 52.5 million cases
Step-by-step explanation:
from the data output in the question, we have the regression equation to be
log y = -151.281 + 0.076577x
y is the number of hiv cases which is in millions
x is the year of the hiv case
x = 1998
we put the value of x in the regression equation
log y = -151.281 + 0.076577(1998)
log y = -151.281 + 153.000846
log y = 1.719846
since the result is in log form,

y = 52.5 million cases
F(x) = 30.eˣ
We notice that the graph intercept y-axis at 30
in f(x) = 30.eˣ , for x=0, e⁰ =1 and f(x) = 30
In short it's the only function that has a y-intercept = 30 (answer B)
Answer: $85,000
Step-by-step explanation:
Given : In a given population of two-earner male-female couples, male earnings have a mean of $40,000 per year and a standard deviation of $12,000.

Female earnings have a mean of $45,000 per year and a standard deviation of $18,000.

If C denote the combined earnings for a randomly selected couple.
Then, the mean of C will be :-

Hence, the mean of C = $85,000