A student can take three subjects in 40 ways.
<u>SOLUTION:</u>
Given that, there are 4 different math courses, 5 different science courses, and 2 different history courses.
A student must take one of each, how many different ways can this be done?
Now, number ways to take math course = 4
Number of ways to take science course = 5
Number of ways to take history course = 2
So, now, total possible ways = product of possible ways for each course = 4 x 5 x 2 = 40 ways.
Hence, a student can take three subjects in 40 ways.
Answer: 49x^2=-21x-2 quadratic functions -1/7and -2/7
Step-by-step explanation:
Quadratic function:
In elementary algebra, the quadratic formula is a formula that provides the solution to a quadratic equation. There are other ways of solving a quadratic equation instead of using the quadratic formula, such as factoring, completing the square, graphing and others.
Move terms to the left side
49
=-21x-2
49
-(-21x-2) =0
Distribute
49
-(-21x-2) =0
49
+21x+2=0
Use the quadratic formula
x=(-b±√
-4ac ) / 2a
Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.
49
+21x+2=0
let, a=49
b=21
c=2
Replace with values in this equation
X=(-b±√
-4ac ) / 2a
Simplify
Evaluate the exponent
Multiply the numbers
Subtract the numbers
Evaluate the square root
Multiply the numbers
x=(-21±7) /98
Separate the equations
To solve for the unknown variable, separate into two equations: one with a plus and the other with a minus.Separate
x=(-21+7) /98
x=(-21-7) /98
Solve
Rearrange and isolate the variable to find each solution
x=-1/7
x=-2/7
Learn more about area here https://brainly.in/question/5597925
#SPJ9
1day=24 hours
10 days=240hours
60mins=1hr
30mins=1/2hr
total is 240hr+21hr+0.5hr=261.5hr
total is 261.5hr
Answer:
3 and 1
Step-by-step explanation: