1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slega [8]
3 years ago
14

Jackson high schol chum bump lava rat socks

Mathematics
1 answer:
Nadya [2.5K]3 years ago
5 0

Answer:

amebo soup

Step-by-step explanation:

i love it

You might be interested in
Can I get some help please
Mamont248 [21]
-2(-2)+3=7
-2(0)+3=3
-2(4)+3=-5
3 0
3 years ago
Better Products, Inc., manufactures three products on two machines. In a typical week, 40 hours are available on each machine. T
Kaylis [27]

Answer:

z (max)  =  1250 $

x₁  = 25    x₂  =  0   x₃  =  25

Step-by-step explanation:

                                Profit $    mach. 1      mach. 2

Product 1     ( x₁ )       30             0.5              1

Product 2    ( x₂ )       50             2                  1

Product 3    ( x₃ )       20             0.75             0.5

Machinne 1 require  2 operators

Machine   2 require  1  operator

Amaximum of  100 hours of labor available

Then Objective Function:

z  =  30*x₁  +  50*x₂  +  20*x₃      to maximize

Constraints:

1.-Machine 1 hours available  40

In machine 1    L-H  we will need

0.5*x₁  +  2*x₂  + 0.75*x₃  ≤  40

2.-Machine 2   hours available  40

1*x₁  +  1*x₂   + 0.5*x₃   ≤  40

3.-Labor-hours available   100

Machine 1     2*( 0.5*x₁ +  2*x₂  +  0.75*x₃ )

Machine  2       x₁   +   x₂   +  0.5*x₃  

Total labor-hours   :  

2*x₁  +  5*x₂  +  2*x₃  ≤  100

4.- Production requirement:

x₁  ≤  0.5 *( x₁ +  x₂  +  x₃ )     or   0.5*x₁  -  0.5*x₂  -  0.5*x₃  ≤ 0

5.-Production requirement:

x₃  ≥  0,2 * ( x₁  +  x₂   +  x₃ )  or    -0.2*x₁  - 0.2*x₂ + 0.8*x₃   ≥  0

General constraints:

x₁  ≥   0       x₂    ≥   0       x₃     ≥   0           all integers

The model is:

z  =  30*x₁  +  50*x₂  +  20*x₃      to maximize

Subject to:

0.5*x₁  +  2*x₂  + 0.75*x₃  ≤  40

1*x₁  +  1*x₂   + 0.5*x₃       ≤  40

2*x₁  +  5*x₂  +  2*x₃        ≤  100

0.5*x₁  -  0.5*x₂  -  0.5*x₃  ≤ 0

-0.2*x₁  - 0.2*x₂ + 0.8*x₃   ≥  0

x₁  ≥   0       x₂    ≥   0       x₃     ≥   0           all integers

After 6 iterations with the help of the on-line solver AtomZmaths we find

z (max)  =  1250 $

x₁  = 25    x₂  =  0   x₃  =  25

6 0
3 years ago
The graph of f(x)=x^2 is sketched in red and the graph of g(x) is sketched in blue. Use the translation rule and f(x)=x^2 to ide
Yuki888 [10]
We can use the vertex form of a quadratic, y = a(x-h)^{2} + k, to find that g(x) = a x^{2} - 7. Plugging (x,y) ordered pairs into g(x), we see that a = 1. For example, for (3, 2), 2 =  a * 3^{2} - 7. Solving for a gives 1.
3 0
3 years ago
jim’s percentile rank in a class of 50 students was the 92nd. what was his rank in the class (1st = best, 2nd = second best, etc
dezoksy [38]
Jim is ranked third best in his class of 50 students.
4 0
3 years ago
How many cups are in 5 quarts
Alina [70]

Answer:

20 cups are in 5 quarts

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
Other questions:
  • When would be only four different equations for a set of math mountain numbers
    12·1 answer
  • 13 is to 8 as x + 4 is to x
    10·1 answer
  • How to solve for quadratic equations with inequalities?
    11·1 answer
  • Solve the following equations then place the correct number in the box provided.
    13·1 answer
  • A pillow is .05 centimeters. How much will it be in meters?
    8·1 answer
  • Write 3.666 as a fraction
    6·2 answers
  • Is 3(x+2)-10=5x-6 one souliton
    8·2 answers
  • Image is above!
    12·1 answer
  • The diagonal of one side of a rhombus are of equal length. Find the measure of angles of the rhombus.​
    5·1 answer
  • Mr. Abaya goy P700,000 loan for the expansion of his business payable monthly in 4years. How much os the monthly amortization if
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!