Answer:
Step-by-step explanation:
?
Answer: B. 264
Step-by-step explanation:
Formula to calculate the sample size 'n' , if the prior estimate of the population proportion (p) is available:
, where z = Critical z-value corresponds to the given confidence interval
E= margin of error
Let p be the population proportion of clear days.
As per given , we have
Prior sample size : n= 150
Number of clear days in that sample = 117
Prior estimate of the population proportion of clear days = 
E= 0.05
The critical z-value corresponding to 95% confidence interval = z*= 1.95 (By z-table)
Then, the required sample size will be :
Simplify ,
Hence, the sample size necessary to construct this interval =264
Thus the correct option is B. 264
Answer:
An interest rate is the amount of interest due per period, as a proportion of the amount lent, deposited or borrowed. The total interest on an amount lent or borrowed depends on the principal sum, the interest rate, the compounding frequency, and the length of time over which it is lent, deposited or borrowed.
Solution:
Given that the point P lies 1/3 along the segment RS as shown below:
To find the y coordinate of the point P, since the point P lies on 1/3 along the segment RS, we have

Using the section formula expressed as
![[\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bmx_2%2Bnx_1%7D%7Bm%2Bn%7D%2C%5Cfrac%7Bmy_2%2Bny_1%7D%7Bm%2Bn%7D%5D)
In this case,

where

Thus, by substitution, we have
![\begin{gathered} [\frac{1(2)+2(-7)}{1+2},\frac{1(4)+2(-2)}{1+2}] \\ \Rightarrow[\frac{2-14}{3},\frac{4-4}{3}] \\ =[-4,\text{ 0\rbrack} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5B%5Cfrac%7B1%282%29%2B2%28-7%29%7D%7B1%2B2%7D%2C%5Cfrac%7B1%284%29%2B2%28-2%29%7D%7B1%2B2%7D%5D%20%5C%5C%20%5CRightarrow%5B%5Cfrac%7B2-14%7D%7B3%7D%2C%5Cfrac%7B4-4%7D%7B3%7D%5D%20%5C%5C%20%3D%5B-4%2C%5Ctext%7B%200%5Crbrack%7D%20%5Cend%7Bgathered%7D)
Hence, the y-coordinate of the point P is
Answer:
3 = 4m or 0.75 = m
Step-by-step explanation:
12.6 + 4m = 9.6 + 8m
Subtract 4m from both sides of the equation
12.6 = 9.6 + 4m
Subtract 9.6 from both sides of the equation
3 = 4m
Divide by four on both sides of the equation
0.75 = m
I Hope That This Helps! :)