A number is a perfect square (or a square number) if its square root is an integer; that is to say, it is the product of an integer with itself. Here, the square root of 20 is about 4.472. Thus, the square root of 20 is not an integer, and therefore 20 is not a square number.
Answer:
Y = 3x^x is a graph that has exponential growth while y = 3^-x has exponential decay.
Y = 3x^x (-∞, 0) and (∞, ∞).
Y = 3x^-x (-∞, ∞) and (∞, 0).
Step-by-step explanation:
The infinity symbols were being used to represent the x and y values of each graph. I will call y = 3^x "graph 1" and y = 3^-x "graph 2".
When graph 1 had positive ∞ for its x value, its y value was reaching towards positive ∞. When its x was reaching for negative ∞, its y was going for 0.
For graph 2, however, when its x was reaching for positive ∞, its x was reaching for 0. When its x was reaching for negative ∞, its y was going for positive ∞.
Here's an image of the graphs:
Nice, already in vertex form
y=a(x-h)^2+k
(h,k) is vertex
therfor since (-3,6) is vertex
we are looking for something like
y=a(x-(-3))^2+6 simplified to
y=a(x+3)^2+6
A is ansre
It is simply would be: √π
= √3.14
= 1.7728
In short, Your Answer would be: 1.7728
Hope this helps!