We want to find

, for

.
Recall the product rule: for 2 differentiable functions f and g, the derivative of their product is as follows:

.
Thus,
![y'=[(x^2+2)^3]'[(x^3+3)^2]+[(x^3+3)^2]'[(x^2+2)^3]\\\\ =3(x^2+2)^2(x^3+3)^2+2(x^3+3)(x^2+2)^3](https://tex.z-dn.net/?f=y%27%3D%5B%28x%5E2%2B2%29%5E3%5D%27%5B%28x%5E3%2B3%29%5E2%5D%2B%5B%28x%5E3%2B3%29%5E2%5D%27%5B%28x%5E2%2B2%29%5E3%5D%5C%5C%5C%5C%20%3D3%28x%5E2%2B2%29%5E2%28x%5E3%2B3%29%5E2%2B2%28x%5E3%2B3%29%28x%5E2%2B2%29%5E3)
Answer: A)

.
Yeah Thanks I love to see that and the answer A
Answer:

Step-by-step explanation:
We want to calculate the right-endpoint approximation (the right Riemann sum) for the function:

On the interval [-1, 1] using five equal rectangles.
Find the width of each rectangle:

List the <em>x-</em>coordinates starting with -1 and ending with 1 with increments of 2/5:
-1, -3/5, -1/5, 1/5, 3/5, 1.
Since we are find the right-hand approximation, we use the five coordinates on the right.
Evaluate the function for each value. This is shown in the table below.
Each area of each rectangle is its area (the <em>y-</em>value) times its width, which is a constant 2/5. Hence, the approximation for the area under the curve of the function <em>f(x)</em> over the interval [-1, 1] using five equal rectangles is:

Answer:
---- in dollars
---- in cents
5 dollars 94 cents
Step-by-step explanation:
Given
Pears

per pound
Grapes

per pound
Required
Determine the amount paid for the fruit in dollar and cents
First, we need to calculate the amount paid for each fruit.
This is calculated by multiplying the amount per pound by the number of pounds bought.
For Pears:

Convert fraction to decimal


For Grapes

Convert fraction to decimal


Next, we add both amounts together to get the total amount spent in dollars.



Multiply by 100 to convert this amount to cents


And it can be represented as dollars and cents as:
5 dollars 94 cents
The decimal is 0.6 to find the decimal form you take 9÷15 = 0.6