Answer:
Abiotic factors such as latitude and temperature can impact biotic aspects of food web structure like the number of species, the number of links, as well as the proportion of basal or top species. These biotics factors can in turn influence network-structural aspects like connectance, omnivory levels or trophic level. In this way, plants make, or produce, the beginnings of most of the food energy on Earth. This is why plants are called producers. They use some of the food energy to carry out their own functions, and store the rest of the energy in their leaves, stems, roots and other parts.
Explanation:
True ..In animals, the female mitotic sequence produces only one ovum; the other three haploid cells become "polar bodies".
Crop monitoring makes use of space-based data to keep tabs on crop development and forecast crop yields for certain fields that have been planted.
<h3>What is monitoring systems?</h3>
A system for monitoring agriculture consists of a network with wireless sensors. These sensors gather information from several nodes positioned on the playing surface. Then, specialists or nearby farmers analyze this data. The data can be used to make a number of inferences about weather patterns, soil fertility, crop quality, etc. A system is developed for agricultural field monitoring in IoT-based modern agriculture with the aid of sensor like light, humid, temperatures, soil moisture, etc. Farmers may monitor the condition of thier fields from any location. IoT-based smart farming is considerably more efficient than conventional farming.
<h3>How do farmers monitor their crops?</h3>
Nowadays, satellite techniques are widely employed in agriculture, and many farmers use them frequently to observe their fields and assess the condition of their crops. Crop monitoring is crucial for managing various pests, weeds, and diseases that affect crops. This gives information about the crop's current situation, and you can then look ahead in time to forecast what will probably be the crop's next problem.
To know more about Monitoring Systems visit:
brainly.com/question/28776835
#SPJ1
Plantae: Autotrophic, Multi- or Monocellular, have cell walls as well as a membrane, have a chloroplast making the characteristic green color and to capture sunlight for photosynthesis. Break down generated glucose into it's components.
Animalia: Heterotrophic, Multi- or Monocellular, have a cell membrane made of a phospholipid bilayer, and many mitochondria to aid with movement energy. Feed on plants or other animals. Eukaryotic cells.
Fungi: Heterotrophic, most Multicellular, have a rigid cell wall made of chitin, specialized cells to aid with decomposition of dead organic matter. Eukaryotic cells.
Protista: Can be plant-like, animal-like, or fungus-like. Most are single-celled, may be chemosynthetic or photosynthetic. Eukaryotic cells.
Archeabacteria: Prokaryotic. Do not have nuclei or membrane-bound organelles. Move around using a flagellum to propel itself. Lives in mainly fluid environments (air, water). Separated from Eubacteria due to it's high tolerance of extreme conditions, such as high salinity, no oxygen, burning heat, or freezing cold. Can be chemosynthetic or anaerobic, as well as aerobic.
Eubacteria: Normal, everyday bacteria. Prokaryotic, chemosynthetic, anaerobic, or aerobic. Do not have nuclei or membrane-bound organelles. Mobile using a flagellum to propel itself.
1/16
For a dihybrid cross, the ratio is 9:3:3:1, and green and wrinkled is the one so doing the math, that is 1/16
I hope this helps