If the measure of angle θ is 3π/4, the true statements are:
- sin(θ) = √2/2.
- The measure of the reference angle is 45°.
<h3>How to determine the true statements?</h3>
In Trigonometry, an angle with a magnitude of 3π/4 (radians) is equivalent to 135° (degrees) and it's found in the second quarter. Thus, we would calculate the reference angle for θ in second quarter as follows:
Reference angle = 180 - θ
Reference angle = 180 - 135
Reference angle = 45°.
Also, a terminal point for this angle θ is given by (-√2/2, √2/2) which corresponds to cosine and sine respectively. This ultimately implies that sin(θ) = √2/2.
tan(θ) = cos(θ)/sin(θ)
tan(θ) = [(-√2/2)/(√2/2)]
tan(θ) = -1
In conclusion, we can logically deduce that only options A and B are true statements.
Read more on terminal point here: brainly.com/question/4256586
#SPJ1
Complete Question:
If the measure of angle θ is 3π/4, which statements are true. Select all the correct answers.
A. sin(θ)=sqrt2/2
B. The measure of the reference angle is 45
C. The measure of the reference angle is 30
D. The measure of the reference angle is 60
E. cos(θ)=sqrt2/2
F. tan(θ)=1
Answer: x=11/36
Step-by-step explanation:
Step One-Subtract 1/6 from both sides.
2x+1/6-1/6=7/9-1/6
2x=11/18
Step Two-Divide both sides by 2.
2x/2=11/18/2
x=11/36.
My math might not be correct, sorry if it is. In addition, my explanation is a bit confusing, so sorry about that too.
Answer:
3 is correct answer
Step-by-step explanation:

hope it helped you:)
Answer:
y = 2/3x+1/3
Step-by-step explanation:
2x−3y+1 = 0
Solve for y
Add 3y to each side
2x−3y+1 +3y= 0+3y
2x +1 = 3y
Divide by 3
2/3 x + 1/3 =3y/3
2/3x +1/3 = y
The slope is 2/3 and the y intercept is 1/3
y = 2/3x+1/3
When you add a zero to the problem, it shows you are now multiplying in the double-digits. Let's say you are multiplying 12x12. First you cover up the one then multiply them. Then cover up the two and you have 10. When you multiply them, it ends in a zero. Don't think of it as adding a zero but adding to products.