1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jek_recluse [69]
3 years ago
6

15 POINTS Please help please

Mathematics
1 answer:
nikitadnepr [17]3 years ago
3 0

Yo sup??

a.Just draw any triangle which has its sides as 3x,4x and 5x where x is any variable.

if x=1 we get the given triangle ie 3,4 and 5

if x=2 we get a similar triangle ie 6,8 and 10

if x=3 we get another similar triangle and so on.

b.Sam will be correct when all the 3 sides of the two triangles are also equal whereas Delaney will always be correct in the rest of the possible cases.

Hope this helps

You might be interested in
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
3 years ago
HELP!! WITH THESES MATH QUESTION! WILL MARK BRAINLIEST 70 POINTS!!! PLEASE HELP
Cloud [144]

1. Let hardcover books = X

Paperback books would be 4x -3 ( 3 less than 4 times)

Now you have:

X + 4x-3 = 447

Simplify:

5x - 3 = 447

Add 3 to each side:

5x = 450

Divide both sides by 5:

x = 450/5

x = 90

He has 90 hardcover books.

2. 300 miles / 25 miles per gallon = 12 gallons of gas.

12 gallons x $$ per gallon = $48 dollars

3. Subtract base pay from total:

1916 - 800 = 1,116 worth of commissions.

Divide commissions by percentage:

1116 / 0.09 = $12,400 total sales.

4.

Find the median of the heights: 65-50 = 15. 15/2 = 7.5

Median = 50+7.5 = 57.5

The equation would be |h-57.5| < 7.5

6 0
3 years ago
Read 2 more answers
Find the values of x and y that make k ll j and m ll n
777dan777 [17]

Answer:

<u><em>x = 80</em></u>

<u><em>y = 130</em></u>

Step-by-step explanation:

The 2 angles are supplementary. so, x-30 + x+50 = 180.

We solve and get 2x = 180-20

<u><em>x = 80</em></u>

y = x+50, because of parallel rules.

<u><em>y = 130</em></u>

3 0
3 years ago
Can someone pls help me solved this problem! I need help help can someone help me I will mark you as brainiest! But plz help me!
Vilka [71]

Answer:

The number is <u>less than</u> 3.5

Step-by-step explanation:

Let us break up and convert each individual phrase into its equivalent in an equation.

"Three time" is 3*

"The difference of a number and three" is (3-x)

"Is greater than" is >

"The number decreased by five" is (x-5)

We can now put all of these parts together to get our equation

3*(3-x)>(x-5)

Now, we can simplify this and solve for x

3*(3-x)>(x-5)\\\\9-3x>x-5\\\\14>4x\\\\\frac{14}{4} >x\\\\\\frac{7}{2}>x\\\\x

5 0
3 years ago
40 is 50% of what number
dimulka [17.4K]
40 is 50% of 80.

80 ÷ 2 = 40
5 0
3 years ago
Read 2 more answers
Other questions:
  • What is the sum of 1/8 + 5/16 + 3/8? A.9/32 B. 13/32 C. 9/16 D. 13/16
    11·1 answer
  • Solve each of the following equations for xx.<br> 2^x+1 = 32
    12·2 answers
  • I NEED THIS ASAP PLEASE !!! I’ll make you the brainliest
    6·1 answer
  • Mrs. Howard is hosting a catered dinner party to celebrate her daughter's graduation. The catering company she plans to use char
    13·2 answers
  • Ramal filled 3 pages in a stamp album. This is one sixth of the pages in the album. How many pages are three in Ramal's stamp al
    8·1 answer
  • A worker places tape around a rectangular shipping label that is 2 times longer than it is wide. How much tape does the worker n
    12·1 answer
  • can someone please help answer this, thank you, will give brainliest once i can, just please no spam answers, thank you!
    13·1 answer
  • 4. Write a number in which the digit 2 is one tenth the<br> value of the digit 2 in 8.524.
    7·1 answer
  • I don’t understand how to solve this
    13·1 answer
  • Find an equation for the perpendicular bisector of the line segment whose endpoints are (-7,8) and (-1,4).
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!