Part A;
There are many system of inequalities that can be created such that only contain points C and F in the overlapping shaded regions.
Any system of inequalities which is satisfied by (2, 2) and (3, 4) but is not stisfied by <span>(-3, -4), (-4, 3), (1, -2) and (5, -4) can serve.
An example of such system of equation is
x > 0
y > 0
The system of equation above represent all the points in the first quadrant of the coordinate system.
The area above the x-axis and to the right of the y-axis is shaded.
Part 2:
It can be verified that points C and F are solutions to the system of inequalities above by substituting the coordinates of points C and F into the system of equations and see whether they are true.
Substituting C(2, 2) into the system we have:
2 > 0
2 > 0
as can be seen the two inequalities above are true, hence point C is a solution to the set of inequalities.
Part C:
Given that </span><span>Natalie
can only attend a school in her designated zone and that Natalie's zone is
defined by y < −2x + 2.
To identify the schools that
Natalie is allowed to attend, we substitute the coordinates of the points A to F into the inequality defining Natalie's zone.
For point A(-3, -4): -4 < -2(-3) + 2; -4 < 6 + 2; -4 < 8 which is true
For point B(-4, 3): 3 < -2(-4) + 2; 3 < 8 + 2; 3 < 10 which is true
For point C(2, 2): 2 < -2(2) + 2; 2 < -4 + 2; 2 < -2 which is false
For point D(1, -2): -2 < -2(1) + 2; -2 < -2 + 2; -2 < 0 which is true
For point E(5, -4): -4 < -2(5) + 2; -4 < -10 + 2; -4 < -8 which is false
For point F(3, 4): 4 < -2(3) + 2; 4 < -6 + 2; 4 < -4 which is false
Therefore, the schools that Natalie is allowed to attend are the schools at point A, B and D.
</span>
Answer:
A.) The sum of the product of the number of terms and the number of terms plus one.
Step-by-step explanation:
So, we have the sum of the first 22 positive even numbers:
S = 2 + 4+ 6 + ... + 44
We know the sum of such sequence is given by the (sum of the first number (2) and the last number (44)) multiplied by the number of terms (11).
S = (2 + 44) * 11 = 46 * 11 = 506
Answer A tells us it should be the sum of the number of terms (22) by the number of terms plus one (22 + 1 = 23).
S = 22 * 23 = 506
That's confirmed.
Answer B would give 22 * 21 = 462, so it's not right
Answer C would give 22 * 2 = 44, obviously not right
Answer D would give 22 * 22 = 484, close but not right.
Answer:
B
Step-by-step explanation:
The m to the y can’t equal to m so it’s b
This is known as Einstein's proof, not because he was the first to come up with it, but because he came up with it as a 15 year old boy.
Here the problem is justification step 2. The written equation
BC ÷ DC = BC ÷ AC
is incorrect, and wouldn't get us our statement 2, which is correct.
For similar triangles we have to carefully pair the corresponding parts to get our ratios right:
ABC ~ BDC means AB:BD = BC:DC = AC:BC so BC/DC=AC/BC.
Justification 2 has the final division upside down.
Step-by-step explanation: