<span>tan(15) =
sin(15) / cos(15) =
sin(45 - 30) / cos(45 - 30) =
[ sin(45)cos(30) - sin(30)cos(45) ] / [ cos(45)cos(30) + sin(45)sin(30)]
Since sin(45) = cos(45) = √2/2, you can just factor that out from the top and bottom
[ cos(30) - sin(30) ] / [ cos(30) + sin(30)]
[ √3/2 - 1/2 ] / [ √3/2 + 1/2]
(√3 - 1) / (√3 + 1)
(√3 - 1)^2 / (√3+1)(√3 - 1)
(√3 - 1)^2 / (3 - 1)
(3 - 2√3 +1) / 2
2 - √3
There's also a formula for tan(a-b), but I couldn't remember it off hand.</span>
The area of a rectangle is the product of its dimensions
The dimensions of the rectangle are:
and ![\mathbf{Width = a^2 + 5a + 25}](https://tex.z-dn.net/?f=%5Cmathbf%7BWidth%20%3D%20a%5E2%20%2B%205a%20%2B%2025%7D)
The area is given as:
![\mathbf{Area = a^3 - 125}](https://tex.z-dn.net/?f=%5Cmathbf%7BArea%20%3D%20a%5E3%20-%20125%7D)
Express 125 as 5^3
![\mathbf{Area = a^3 - 5^3}](https://tex.z-dn.net/?f=%5Cmathbf%7BArea%20%3D%20a%5E3%20-%205%5E3%7D)
Apply difference of cubes
![\mathbf{Area = (a - 5)(a^2 + 5a + 5^2)}](https://tex.z-dn.net/?f=%5Cmathbf%7BArea%20%3D%20%28a%20-%205%29%28a%5E2%20%2B%205a%20%2B%205%5E2%29%7D)
![\mathbf{Area = (a - 5)(a^2 + 5a + 25)}](https://tex.z-dn.net/?f=%5Cmathbf%7BArea%20%3D%20%28a%20-%205%29%28a%5E2%20%2B%205a%20%2B%2025%29%7D)
The area of a rectangle is:
![\mathbf{Area = Length \times Width}](https://tex.z-dn.net/?f=%5Cmathbf%7BArea%20%3D%20Length%20%5Ctimes%20Width%7D)
So, by comparison:
![\mathbf{Length = a -5}](https://tex.z-dn.net/?f=%5Cmathbf%7BLength%20%3D%20a%20-5%7D)
![\mathbf{Width = a^2 + 5a + 25}](https://tex.z-dn.net/?f=%5Cmathbf%7BWidth%20%3D%20a%5E2%20%2B%205a%20%2B%2025%7D)
Read more about areas at:
brainly.com/question/3518080
3 units is the answer you're looking for
If the position at time <em>t</em> is
<em>s(t)</em> = (1 m/s³) <em>t</em> ³
then the average velocity over <em>t</em> = 2 s and <em>t</em> = 2.001 s is
<em>v</em> (ave) = (<em>s</em> (2.001 s) - <em>s</em> (2 s)) / (2.001 s - 2 s)
<em>v</em> (ave) = ((1 m/s³) (2.001 s)³ - (1 m/s³) (2 s)³) / (2.001 s - 2 s)
<em>v</em> (ave) ≈ (8.01201 m - 8 m) / (0.001 s)
<em>v</em> (ave) ≈ 12.006 m/s