If you look at the graph of y = floor(x), you'll see a stairstep pattern that climbs up as you read from left to right. There are no vertical components to the graph. There are only horizontal components.
The graph is not periodic because the y values do not repeat themselves after a certain x value is passed. For instance, start at x = 0 and go to x = 3. You'll see the y values dont repeat themselves as if a sine function would. If you wanted the function to be periodic, the steps would have to go downhill at some point; however, this does not happen.
Conclusion: The function floor(x) is <u>not</u> periodic.
Answer:
Degree 4
Step-by-step explanation:
Expression:
3x^3 + 3x^2y^2 - y^2
- 3x^3 - degree 3
- 3x^2y^2 - degree 2+2 = 4
- y^2 - degree 2
So the expression has degree 4 as per the highest degree of the terms
Answer:
a) the probability that the minimum of the three is between 75 and 90 is 0.00072
b) the probability that the second smallest of the three is between 75 and 90 is 0.396
Step-by-step explanation:
Given that;
fx(x) = { 1/5 ; 50 < x < 100
0, otherwise}
Fx(x) = { x-50 / 50 ; 50 < x < 100
1 ; x > 100
a)
n = 3
F(1) (x) = nf(x) ( 1-F(x)^n-1
= 3 × 1/50 ( 1 - ((x-50)/50)²
= 3/50 (( 100 - x)/50)²
=3/50³ ( 100 - x)²
Therefore P ( 75 < (x) < 90) = ⁹⁰∫₇₅ 3/50³ ( 100 - x)² dx
= 3/50³ [ -2 (100 - x ]₇₅⁹⁰
= (3 ( -20 + 50)) / 50₃
= 9 / 12500 = 0.00072
b)
f(k) (x) = nf(x) ( ⁿ⁻¹_k₋ ₁) ( F(x) )^k-1 ; ( 1 - F(x) )^n-k
Now for n = 3, k = 2
f(2) (x) = 3f(x) × 2 × (x-50 / 50) ( 1 - (x-50 / 50))
= 6 × 1/50 × ( x-50 / 50) ( 100-x / 50)
= 6/50³ ( 150x - x² - 5000 )
therefore
P( 75 < x2 < 90 ) = 6/50³ ⁹⁰∫₇₅ ( 150x - x² - 5000 ) dx
= 99 / 250 = 0.396
Answer: B(7, – 5)
Step-by-step explanation: