1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sp2606 [1]
3 years ago
5

Please help in the question it should be if t=-6 when r =-2 its an error

Mathematics
1 answer:
Natasha2012 [34]3 years ago
7 0

Answer:

r = - \frac{12}{7}

Step-by-step explanation:

Given that r varies inversely as t , then the equation relating them is

r = \frac{k}{t} ← k is the constant of variation

To find k use the condition t = - 6 when r = - 2, then

- 2 = \frac{k}{-6} ( multiply both sides by - 6 )

12 = k, thus

r = \frac{12}{t} ← equation of variation

when t = - 7, then

r = \frac{12}{-7} = - \frac{12}{7}

You might be interested in
If I plan to run 400 yards and I have completed 80%, how many yards do I have left?
Dimas [21]

Answer:

You have 80 yards left to run.

Step-by-step explanation:

To solve this problem, we first must realize that if you have completed 80% of the run, that you have 20% left (this is because 100%-80% = 20%).  

Next, we must find 20% of 400 yards.  We must remember that in math, the word "of" represents multiplication.  We also know that 20% = 20/100 = 0.2.

To find 20% of 400 yards, we can perform the following operation:

20% * 400

0.2 * 400

80

Therefore, you have 80 yards left.

Hope this helps!

7 0
3 years ago
X power to 11 +101 divisible by x+1 then what is the remainder
emmasim [6.3K]

Answer:

110

Step-by-step explanation:

Let's define P(x) = x^{11} + 101. So when we divide it by 'x+1', we can use Bezout's Theorem which states: that any polynomial(P(X)) divided by another binomial in the form 'x - a', then the remainder will be P(a).

We can use this fact to determine the remainder, because we divided our P(X) by x + 1 which is the same as x - (-1). So we plug in P(-1).

P(-1) = (-1)^11 + 101 = -1 + 101 = 110

6 0
3 years ago
Which expression is equivalent to the following complex fraction?
Alex17521 [72]

Answer:

\frac{x - 1}{2x}

Step-by-step explanation:

This is a correct answer.

5 0
3 years ago
How do I evaluate this using trigonometric substitution?<br><br>∫dx/(81x^2+4)^2
Daniel [21]

Answer:

\displaystyle \frac{1}{144}arctan(\frac{9x}{2}) + \frac{x}{8(81x^2 + 4)} + C

General Formulas and Concepts:

<u>Alg I</u>

  • Terms/Coefficients
  • Factor
  • Exponential Rule [Dividing]: \displaystyle \frac{b^m}{b^n} = b^{m - n}

<u>Pre-Calc</u>

[Right Triangle Only] Pythagorean Theorem: a² + b² = c²

  • a is a leg
  • b is a leg
  • c is hypotenuse

Trigonometric Ratio: \displaystyle sec(\theta) = \frac{1}{cos(\theta)}

Trigonometric Identity: \displaystyle tan^2\theta + 1 = sec^2\theta

TI: \displaystyle sin(2x) = 2sin(x)cos(x)

TI: \displaystyle cos^2(\theta) = \frac{cos(2x) + 1}{2}

<u>Calc</u>

Integration Rule [Reverse Power Rule]:                                                                \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

IP [Addition/Subtraction]:                                                             \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

U-Trig Substitution: x² + a² → x = atanθ

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \int {\frac{dx}{(81x^2 + 4)^2}}

<u>Step 2: Identify Sub Variables Pt.1</u>

Rewrite integral [factor expression]:

\displaystyle \int {\frac{dx}{[(9x)^2 + 4]^2}}

Identify u-trig sub:

\displaystyle x = atan\theta\\9x = 2tan\theta \rightarrow x = \frac{2}{9}tan\theta\\dx = \frac{2}{9}sec^2\theta d\theta

Later, back-sub θ (integrate w/ respect to <em>x</em>):

\displaystyle tan\theta = \frac{9x}{2}  \rightarrow \theta = arctan(\frac{9x}{2})

<u>Step 3: Integrate Pt.1</u>

  1. [Int] Sub u-trig variables:                                                                                 \displaystyle \int {\frac{\frac{2}{9}sec^2\theta}{[(2tan\theta)^2 + 4]^2}} \ d\theta
  2. [Int] Rewrite [Int Prop - MC]:                                                                           \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[(2tan\theta)^2 + 4]^2}} \ d\theta
  3. [Int] Evaluate exponents:                                                                                \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4tan^2\theta + 4]^2}} \ d\theta
  4. [Int] Factor:                                                                                                      \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4(tan^2\theta + 1)]^2}} \ d\theta
  5. [Int] Rewrite [TI]:                                                                                              \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4sec^2\theta]^2}} \ d\theta
  6. [Int] Evaluate exponents:                                                                                \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{16sec^4\theta} \ d\theta
  7. [Int] Rewrite [Int Prop - MC]:                                                                          \displaystyle \frac{1}{72} \int {\frac{sec^2\theta}{sec^4\theta} \ d\theta
  8. [Int] Divide [ER - D]:                                                                                         \displaystyle \frac{1}{72} \int {\frac{1}{sec^2\theta} \ d\theta
  9. [Int] Rewrite [TR]:                                                                                            \displaystyle \frac{1}{72} \int {cos^2\theta} \ d\theta
  10. [Int] Rewrite [TI]:                                                                                              \displaystyle \frac{1}{72} \int {\frac{cos(2\theta) + 1}{2}} \ d\theta
  11. [Int] Rewrite [Int Prop - MC]:                                                                          \displaystyle \frac{1}{144} \int {cos(2\theta) + 1} \ d\theta
  12. [Int] Rewrite [Int Prop - A/S]:                                                                          \displaystyle \frac{1}{144} [\int {cos(2\theta) \ d\theta + \int {1} \ d\theta]  

<u>Step 4: Identify Sub Variables Pt.2</u>

Determine u-sub for trig int:

u = 2θ

du = 2dθ

<u>Step 5: Integrate Pt.2</u>

  1. [Ints] Rewrite [Int Prop - MC]:                                                                       \displaystyle \frac{1}{144} [\frac{1}{2} \int {2cos(2\theta) \ d\theta + \int {1 \theta ^0} \ d\theta]
  2. [Int] U-Sub:                                                                                                     \displaystyle \frac{1}{144} [\frac{1}{2} \int {cos(u) \ du + \int {1 \theta ^0} \ d\theta]
  3. [Ints] Integrate [Trig/Int Rule - RPR]:                                                             \displaystyle \frac{1}{144} [\frac{1}{2} sin(u) + \theta + C]
  4. [Expression] Back Sub:                                                                                 \displaystyle \frac{1}{144} [\frac{1}{2} sin(2 \theta) + arctan(\frac{9x}{2}) + C]
  5. [Exp] Rewrite [TI]:                                                                                           \displaystyle \frac{1}{144} [\frac{1}{2}(2sin(\theta)cos(\theta)) + arctan(\frac{9x}{2}) + C]
  6. [Exp] Multiply:                                                                                                 \displaystyle \frac{1}{144} [sin(\theta)cos(\theta) + arctan(\frac{9x}{2}) + C]
  7. [Exp] Back Sub:                                                                                             \displaystyle \frac{1}{144} [sin(arctan(\frac{9x}{2}))cos(arctan(\frac{9x}{2})) + arctan(\frac{9x}{2}) + C]

<u>Step 6: Triangle</u>

Find trig values:

\displaystyle tan\theta = \frac{9x}{2}

\displaystyle \theta = arctan(\frac{9x}{2})

tanθ = opposite / adjacent; solve hypotenuse of right triangle, determine trig ratios:

sinθ = opposite / hypotenuse

cosθ = adjacent / hypotenuse

Leg <em>a</em> = 2

Leg <em>b</em> = 9x

Leg <em>c</em> = ?

  1. Sub variables [PT]:                                                                                         \displaystyle 2^2 + (9x)^2 = c^2
  2. Evaluate exponents:                                                                                      \displaystyle 4 + 81x^2 = c^2
  3. [Equality Property] Square root both sides:                                                  \displaystyle \sqrt{4 + 81x^2} = c
  4. Rewrite:                                                                                                           c = \sqrt{81x^2 + 4}

Substitute into trig ratios:

\displaystyle sin\theta = \frac{9x}{\sqrt{81x^2 + 4}}

\displaystyle cos\theta = \frac{2}{\sqrt{81x^2 + 4}}

<u>Step 7: Integrate Pt.3</u>

  1. [Exp] Sub variables [TR]:                                                                               \displaystyle \frac{1}{144} [\frac{9x}{\sqrt{81x^2 + 4}} \cdot \frac{2}{\sqrt{81x^2 + 4}} + arctan(\frac{9x}{2}) + C]
  2. [Exp] Multiply:                                                                                                 \displaystyle \frac{1}{144} [\frac{18x}{81x^2 + 4} + arctan(\frac{9x}{2}) + C]
  3. [Exp] Distribute:                                                                                             \displaystyle \frac{1}{144}arctan(\frac{9x}{2}) + \frac{x}{8(81x^2 + 4)} + C
3 0
3 years ago
Chris is calculating his deductions for his tax return. He is filing singly. He can claim $1,813 from property taxes, $1,513 fro
dimulka [17.4K]
You add
1,813 + 1,513 + 761 = 4,087
Then you subtract
5,700 - 4,087 = 1,613
It's C. The standard deduction is $1,613 better than Chris's deductions
I just took the test.
3 0
3 years ago
Read 2 more answers
Other questions:
  • HELP PLEASE THANKS!!!!!
    7·2 answers
  • A simple random sample of size nequals40 is drawn from a population. The sample mean is found to be 103.9​, and the sample stand
    9·1 answer
  • Simplify : i attatched an image
    15·2 answers
  • the interest on an investment varies directly as the rate of of interest. if interest is $47 when interst rate is 5% find the in
    9·1 answer
  • Eathan ran 11 miles in 2 hours. what is the unit rate of miles to hours
    6·2 answers
  • What is the are of the polygon?<br> А<br> D<br> 9 cm<br> E<br> 9 cm<br> 5 cm<br> C<br> 12 cm<br> B
    11·1 answer
  • Huntly Billings bought a $1,000 bond for $1,050. What was the quotation of the bond?
    15·1 answer
  • 2. Find the surface area of the solid
    6·1 answer
  • Tori and Jada use a dot plot to display the points that each scored during 14 basketball games.
    5·1 answer
  • ( BRAINLIEST QUEATION)
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!