1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Savatey [412]
3 years ago
7

Which value has an absolute deviation of 5 from the mean of this data set?

Mathematics
1 answer:
Lesechka [4]3 years ago
5 0

Answer: 28

Step-by-step explanation: see prev. explanation

You might be interested in
 A police car drives 230 km in 2 1/2 hours. What is its average speed in kilometers per hour?​
harina [27]

Answer:

92 km/h

Step-by-step explanation:

8 0
3 years ago
A business owner wants to have the front window of her store painted and is considering two
Aleks [24]
Denise would have to take seven hours to charge the same amount of money as tiana. furthermore, it would cost the same amount as that is what the prompt is asking for.

to get the answer:
i subtracted $19 from $292 to eliminate the
fee element because if you were to divide
$292 by $39 without the step, the hours would be incorrect and the price would be greater.

after subtracting i got $273

from there i divided $273 by $39 and got 7 (the amount of hours it would take)
7 0
3 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
3. Triangle JKL is shown below. Which of the following is not a true statement about
alina1380 [7]

Option A is true because the sum of angles in a triangle is 180, so we can rule that one out immediately.

We can solve for x for the other 3 options by setting up this equation:

7x+2 + 4x+7 + 8x = 180 | Simplify

19x + 9 = 180 | Subtract 9

19x = 171 | Divide by 19
x=9

Now we can substitute x into all the values:
<J = 7x+2 = 65
<L = 4x+7 = 43
<K = 8x = 72


Looking at the options again, we can see that A, B, and D are true, leaving C to be false.

4 0
2 years ago
Use the Distributive Property to write equivalent expressions for each of the following
sergij07 [2.7K]
(5x6) + (5x) (hope this helps!)
6 0
3 years ago
Read 2 more answers
Other questions:
  • What is the area of a triangle with a base of 4v^3 and a height of vu^2?
    15·1 answer
  • Marco and Drew stacked boxes on a shelf. Marco lifted 9 boxes and Drew lifted 14 boxes. The boxes that Drew lifted each weighed
    13·2 answers
  • Pick the correct description of the line y=-5/3x
    5·1 answer
  • HELP WITH MY HOMEWORK! WILL PICK BRAINLIEST!
    13·1 answer
  • How many 6 digit pin numbers are possible if the digits are repeated?
    5·2 answers
  • 2)A chef made 30 donuts in 60 minutes. How long would it take him to make 90 donuts?
    12·2 answers
  • Rewrite each expression without parentheses:
    14·2 answers
  • Which expression correctly represents "eight times the difference of four and a number"?
    14·1 answer
  • If s=7.44 then is 5.38=0.75s true or false
    8·2 answers
  • A gift box is a cube with a volume of 512 cubic inches. What is the length of each edge of the box?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!