1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rus_ich [418]
3 years ago
5

7,423.28 fraction form

Mathematics
2 answers:
cestrela7 [59]3 years ago
6 0
7,423.28 / 1,000.00

1,000.00 is like 100 percent, while 7,423.28 rounded is SORT OF like 74 percent (74.2328)
Ahat [919]3 years ago
3 0
185582/25

or

7423 7/25
I hope that helps
You might be interested in
What is the correct answer to this question?<br><br> 13M=7.15
ad-work [718]

Answer:

m=0.55

Step-by-step explanation:

Divide each term by  13  and simplify.

7 0
3 years ago
Read 2 more answers
Find the value of the determinant.<br> 4 8 10<br> 4 0-1<br> 3 - 2 4
VLD [36.1K]

Answer:

- 240

Step-by-step explanation:

We have to find the value of the following determinant  

\left|\begin{array}{ccc}4&8&10\\4&0&-1\\3&-2&4\end{array}\right|

Now, we know that the value of a general determinant \left|\begin{array}{ccc}a&b&c\\d&e&f\\g&h&i\end{array}\right| is given by [a( ei - fh) + b(fg - di) + c(dh - eg)]

Therefore, the value of the given determinant is

= 4[0 × 4 - (-1)(-2)] + 8[3(-1) - 4 × 4] + 10[4(-2) - 3 × 0]

= - 8 - 152 - 80 = - 240 (Answer)

4 0
4 years ago
Advance pile up trigonometry
earnstyle [38]

Answer:

x = 6.9168 or x = 7

Step-by-step explanation:

Hope that helps :)

3 0
3 years ago
A complex number, represented by z = x + iy, may also be visualized as a 2 by 2 matrix
Marat540 [252]

Answer:

Step-by-step explanation:

A) Suppose that we have the complex numbers

z= x + iy \quad \text{and} \quad \\\\ \tilde{z}=\tilde{x} + i \tilde{y}

Remember that to sum complex numbers, we sum the real parts of the two numbers to get the real part and the imaginary parts of the two numbers to get the imaginary part. Hence,  

z+\tilde{z} = (x + i y) + (\tilde{x} + i \tilde{y}) = (x + \tilde{x})+i (y+\tilde{y})

On the other hand, if we sum the matrix visualizations of z \quad \text{and} \quad \tilde{z} we get

\left[\begin{array}{cc}x &y\\-y&x\end{array}\right] + \left[\begin{array}{cc}\tilde{x}&\tilde{y}\\ -\tilde{y}&\tilde{x}\end{array}\right] = \left[\begin{array}{cc}x + \tilde{x}& y + \tilde{y}\\-(y+\tilde{y})&x+\tilde{x}\end{array}\right]

which is the matrix visualization of z + \tilde{z}.

To multiply two complex numbers, we use the distributive law to multiplly and then separete the real part from the imaginary part

z \cdot \tilde{z}= (x + iy) \cdot (\tilde{x} + i \tilde{y})=(x \tilde{x} + i x \tilde{y} + i \tilde{x} y - y\tilde{y} ) = (x\tilde{x}-y\yilde{y})+i(x\tilde{y}+\tilde{x}y)

Again, if we multiply the matrix visualizations of z \quad \text{and} \quad \tilde{z} we get

\left[\begin{array}{cc}x&y\\-y&x\end{array}\right]\left[\begin{array}{cc}\tilde{x}&\tilde{y}\\-\tilde{y}&\tilde{x}\end{array}\right] = \left[\begin{array}{cc}x\tilde{x}-y\tilde{y}&x\tilde{y}+y\tilde{x}\\-y\tilde{x}-x\tilde{y}&x\tilde{x}-y\tilde{y}\end{array}\right]

which is the matrix viasualization of z\cdot\tilde{z}.

B)  Since the usual matrix operations are consisten with the usual addition and multiplication rules in the complex numbers, we can use them to find the multiplicative inverses of a complex number z=x+iy.

We are looking for the complex number z^{-1}=(x+iy)^{-1} which in terms of matrices is equivalent to find the matrix

\left[\begin{array}{cc}x&y\\-y & x\end{array}\right]^{-1}= \dfrac{1}{x^{2}+y^{2}} \left[\begin{array}{ccc}x&-y\\y&x\end{array}\right]    

Hence,

z^{-1}=\dfrac{1}{x^2 +y^2} (x-iy)=\dfrac{1}{|z|^2}(x-iy)

6 0
3 years ago
Kelly is going to shop with the $200.00 that she earned from doing chores. She wants to save 30% of her money to put into a savi
Evgesh-ka [11]

Answer:

No she won't

Step-by-step explanation:

200(0.30)=60

60(0.06)=3.6

60+3.6=63.6

75(0.06)=4.5

75+4.5=79.5

79.5+63.6=143.1

200-143.1=56.9

56.9<60

6 0
4 years ago
Other questions:
  • Monica has $1 $5 and $10 bills in her wallet that are worth $96. If she had one more $1 bill she would have just as many $1 bill
    5·1 answer
  • $3.75 minus 4 dollars
    9·2 answers
  • A bag of 28 tulip bulbs contain 10 red tulip bulbs, 12 yellow tulip bulbs, and 6 purple tulip bulbs. What is the probability tha
    6·1 answer
  • you have 50 dollars in your savings account Each week you deposit 5 dollars in your account Write an expression that models the
    8·1 answer
  • Rewrite the function f(x)=-3(x+3)^2-13<br> in the form f(x)=ax^2+bx+c
    9·2 answers
  • How many two digits divisible by 6
    8·2 answers
  • Please help will give Brainliest
    10·1 answer
  • Aubrie computed the average of her six biology test scores by mistakenly
    11·1 answer
  • If interest is compounded twice a year, at what annual rate must you invest $2000 to have $3000 at the end of 6 years?
    13·1 answer
  • Help please i need to know this so i get a good grade.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!