When written in "vertex form":
• (h, k) is the vertex of the parabola, and x = h is the axis of symmetry.
• the h represents a horizontal shift (how far left, or right, the graph has shifted from x = 0).
• the k represents a vertical shift (how far up, or down, the graph has shifted from y = 0).
• notice that the h value is subtracted in this form, and that the k value is added.
If the equation is y = 2(x - 1)2 + 5, the value of h is 1, and k is 5.
If the equation is y = 3(x + 4)2 - 6, the value of h is -4, and k is -6.
Answer: the answer is 546
Step-by-step explanation: because 646 goes into 565 so 546 is the answer
Angle Z = Angle R = 35 degrees
Angle Y = 180-70-35 = 180-105 = 75
35 & 75 degrees
Answer:
she got those numbers from the angles angle shape
Step-by-step explanation:
im middle school and i dont know how to solve this but i see its not that completad
Answer:
See Explanation
Step-by-step explanation:
a) Additive inverse of −2
- the additive inverse of a number a is the number that, when added to 'a', yields zero. This number is also known as the opposite (number), sign change, and negation.
- So the Additive inverse of -2 is 2. ∴ -2+2=0
b) Additive identity of −5
- Additive identity is the value when added to a number, results in the original number. When we add 0 to any real number, we get the same real number.
- -5 + 0 = -5. Therefore, 0 is the additive identity of any real number.
c) additive inverse of 3
- Two numbers are additive inverses if they add to give a sum of zero. 3 and -3 are additive inverses since 3 + (-3) = 0. -3 is the additive inverse of 3.
d). multiplicative identity of 19
- an identity element (such as 1 in the group of rational numbers without 0) that in a given mathematical system leaves unchanged any element by which it is multiplied
- Multiplicative identity if 19 is 1 only, since 19 x 1 = 19.
e) multiplicative inverse of 7
- Dividing by a number is equivalent to multiplying by the reciprocal of the number. Thus, 7 ÷7=7 × 1⁄7 =1. Here, 1⁄7 is called the multiplicative inverse of 7.
d) | 11-5|×|1-5|
- | 11-5|×|1-5| ⇒ I6I×I-4I ⇒ 6×4 ⇒ 24