Find the critical points of
:


All three points lie within
, and
takes on values of

Now check for extrema on the boundary of
. Convert to polar coordinates:

Find the critical points of
:



where
is any integer. There are some redundant critical points, so we'll just consider
, which gives

which gives values of

So altogether,
has an absolute maximum of 65/16 at the points (0, -1/2) and (0, 1/2), and an absolute minimum of 3 at (-1, 0).
Perhaps you meant <span>(a^3+14a^2+33a-20) / (a+4), for division by (a+4).
Do you know synthetic division? If so, that'd be a great way to accomplish this division. Assume that (a+4) is a factor of </span>a^3+14a^2+33a-20; then assume that -4 is the corresponding root of a^3+14a^2+33a-20.
Perform synth. div. If there is no remainder, then you'll know that (a+4) is a factor and will also have the quoitient.
-4 / 1 14 33 -20
___ -4_-40 28___________
1 10 -7 8
Here the remainder is not zero; it's 8. However, we now know that the quotient is 1a^2 + 10a - 7 with a remainder of 8.
Answer:
(0,-4)
Step-by-step explanation:
Just enter the equation into desmos and then find where the line meets the y-axis, which is the line that comes down the middle.