Answer:
hello :
If f(x)=x-2 and g(x)=1/2x,
g(f(x)) = g ( x - 2 )
= 1/2(x-2)
g(f(x)) = (1/2)x - 1
I’m pretty sure it’s 240 because you multiply then add
Answer:
The population of bacteria can be expressed as a function of number of days.
Population =
where n is the number of days since the beginning.
Step-by-step explanation:
Number of bacteria on the first day=![\[5 * 2^{0} = 5\]](https://tex.z-dn.net/?f=%5C%5B5%20%2A%202%5E%7B0%7D%20%3D%205%5C%5D)
Number of bacteria on the second day = ![\[5 * 2^{1} = 10\]](https://tex.z-dn.net/?f=%5C%5B5%20%2A%202%5E%7B1%7D%20%3D%2010%5C%5D)
Number of bacteria on the third day = ![\[5*2^{2} = 20\]](https://tex.z-dn.net/?f=%5C%5B5%2A2%5E%7B2%7D%20%3D%2020%5C%5D)
Number of bacteria on the fourth day = ![\[5*2^{3} = 40\]](https://tex.z-dn.net/?f=%5C%5B5%2A2%5E%7B3%7D%20%3D%2040%5C%5D)
As we can see , the number of bacteria on any given day is a function of the number of days n.
This expression can be expressed generally as
where n is the number of days since the beginning.
Answer:
The surface area is A≈96ft²
Answer:
(A) Yes, since the test statistic is in the rejection region defined by the critical value, reject the null. The claim is the alternative, so the claim is supported.
Step-by-step explanation:
Null hypothesis: The wait time before a call is answered by a service representative is 3.3 minutes.
Alternate hypothesis: The wait time before a call is answered by a service representative is less than 3.3 minutes.
Test statistic (t) = (sample mean - population mean) ÷ sd/√n
sample mean = 3.24 minutes
population mean = 3.3 minutes
sd = 0.4 minutes
n = 62
degree of freedom = n - 1 = 62 - 1 = 71
significance level = 0.08
t = (3.24 - 3.3) ÷ 0.4/√62 = -0.06 ÷ 005 = -1.2
The test is a one-tailed test. The critical value corresponding to 61 degrees of freedom and 0.08 significance level is 1.654
Conclusion:
Reject the null hypothesis because the test statistic -1.2 is in the rejection region of the critical value 1.654. The claim is contained in the alternative hypothesis, so it is supported.