

- <u>The </u><u>sum</u><u> </u><u>of </u><u>the </u><u>number </u><u>in </u><u>each </u><u>of </u><u>the </u><u>four </u><u>rows </u><u>is </u><u>the </u><u>same </u>
- <u>The </u><u>sum </u><u>of </u><u>the </u><u>numbers </u><u>in </u><u>each </u><u>of </u><u>the </u><u>three </u><u>columns </u><u>is </u><u>the </u><u>same</u>
- <u>The </u><u>sum </u><u>of </u><u>any </u><u>row </u><u>does </u><u>not </u><u>equal </u><u>the </u><u>sum </u><u>of </u><u>any </u><u>column </u>

<u>According </u><u>to </u><u>the </u><u>Second</u><u> </u><u>rule </u><u>:</u><u>-</u>


<u>According </u><u>to </u><u>the </u><u>first </u><u>rule </u><u>:</u><u>-</u><u> </u>


<u>From </u><u>(</u><u> </u><u>1</u><u> </u><u>)</u><u> </u><u>we </u><u>got </u><u>:</u><u>-</u>



<u>Subsitute </u><u>(</u><u>3</u><u>)</u><u> </u><u>in </u><u>(</u><u> </u><u>2</u><u> </u><u>)</u><u> </u><u>:</u><u>-</u>


<u>We</u><u> </u><u>can </u><u>write </u><u>it </u><u>as </u><u>:</u><u>-</u>



<u>Subsitute </u><u>the </u><u>value </u><u>of </u><u>c </u><u>and </u><u>e </u><u>in </u><u>(</u><u> </u><u>1</u><u> </u><u>)</u><u>:</u><u>-</u>


<u>Now</u><u>, </u>









Hence, The value of a, b, c, d and e is 23, 31 ,60 ,33 and 51 .
The perimeter of a circle is its total circumference, but in this case a semi-circle will measure half the circumference plus its diameter.
If the semicircle measures 8cm then the total circle is 16 cm, and we can calculate its diameter or radius from there. The perimeter is defined as:
p = pi*diameter = 16
diameter = 16/pi = 16/3.14
diameter = 5.1 cm
Therefore the semi-circle perimeter is:
perimeter = semi-circle + diameter = 8 + 5.1 = 13.1 cm
So the image below shows what quadrants are. From the top-right square, the order of quadrants goes from 1-4 in a counter-clockwise matter.
Quadrant I: Top-right square
Quadrant II: Top-left square
Quadrant III: Bottom-left square
Quadrant IV: Bottom-right square.
Any points that are on the bolded vertical line are on the y-axis, and any points on the bolded horizontal line is on the x-axis.
So i have two answers this is Completing the Square:
(x+6)^2-36
and this is finding the perfect square trinomial:
x^2+12x+36
Hope this helps