Answer:
-x¹⁴ / 5040
-½ < x < ½
Step-by-step explanation:
f(x) = e^(-x²)
The Taylor series for eˣ centered at 0 is:
eˣ = ∑ (1/n!) xⁿ
Substitute -x²:
e^(-x²) = ∑ (1/n!) (-x²)ⁿ
e^(-x²) = ∑ (1/n!) (-1)ⁿ x²ⁿ
The 14th degree term occurs at n=7.
(1/7!) (-1)⁷ x¹⁴
-x¹⁴ / 5040
ln(1 + x) = ∑ₙ₌₁°° (-1)ⁿ⁺¹ xⁿ / n
If we substitute 4x²:
ln(1 + 4x²) = ∑ₙ₌₁°° (-1)ⁿ⁺¹ (4x²)ⁿ / n
Using ratio test:
lim(n→∞)│aₙ₊₁ / aₙ│< 1
lim(n→∞)│[(-1)ⁿ⁺² (4x²)ⁿ⁺¹ / (n+1)] / [(-1)ⁿ⁺¹ (4x²)ⁿ / n]│< 1
lim(n→∞)│-1 (4x²) n / (n+1)│< 1
4x² < 1
x² < ¼
-½ < x < ½
Answer:
77° is the answer
Step-by-step explanation:
hope it helps;)
<span>If Dingane has $8.00, and thirty percent of that money is from five cent coins, then 8 x 0.3 = $2.40 of Dingane's money is made of five cent coins. In this case the number of five cent coins is the number of cents divided by five: 240/5 = 48. Therefore, Dingane has forty-eight five-cent coins.</span>