Answer:
70°
found by considering A-frame ladder as a triangle
Step-by-step explanation:
Given that,
angle form on either side of A-frame ladder with the ground = 125°(exterior)
As it is a A-frame ladder so its a triangle, we will find the angle at the top of ladder by using different properties of triangle
1) find interior angle form by A-frame ladder with the ground
125 + x = 180 sum of angles on a straight line
x = 180 - 125
x = 55°
2) find the angle on top of ladder
55 + 55 + y = 180 sum of angle of a triangle
110 + y = 180
y = 180 - 110
y = 70°
Knowing nexnjhdjhdhfgnu. Hngj
Answer:
FD≈25.94.. rounded = 26
Step-by-step explanation:
FD²=12²+(4x+11)²
FD²=144+16x²+88x+121
FD²=265+16x²+88x
also
FD²=12²+(13x-16)²
FD²=144+169x²-416x+256
FD²=400+169x²-416x
thus
265+16x²+88x = 400+169x²-416x
16x²-169x²+88x+416x+265-400 = 0
-153x²+504x-135 = 0
we will solve this quadratic equation by suing the quadratic formula to find x
x=(-504±sqrt(504²-4(-153)(-135)))/2(-153)
x=(-504±
)/2(-153)
x=(-504±
)/-306
x=(-504±
)/-306
x=(-504±414)/-306
x=(-504+414)/-306 and x=(-504-414)/-306
x=-90/-306 and x=-918/-306
x= 5/17 , 3
substituting x by the roots we found
check for 5/17:
4x+11 = 4×(5/17)+11 = (20/17)+11 = (20+187)/17 = 207/17 ≈ 12.17..
13x-16 = 13×(5/17)-16 = (65/17)-16 = (65-272)/17 = -207/17 ≈ -12.17..
check for 3:
4x+11 = 4×3+11 = 12+11 = 23
13x-16 = 13×3-16 = 23
thus 3 is the right root
therfore
ED=23 and CD=23
FD²=FE²+ED² or FD²=FC²+CD²
FD²=12²+23²
FD²=144+529
FD²=673
FD=√673
FD≈25.94.. rounded = 26
Answer:
$15
Step-by-step explanation:
If you have 2 smoothies for $5 you need to take 5 times 3. Cause we have split the 6 into 3 cause you get 2 smoothies for $5.