Answer:
![AC=8\sqrt{3}\ cm\\ \\AB=16\sqrt{3}\ cm\\ \\BC=24\ cm](https://tex.z-dn.net/?f=AC%3D8%5Csqrt%7B3%7D%5C%20cm%5C%5C%20%5C%5CAB%3D16%5Csqrt%7B3%7D%5C%20cm%5C%5C%20%5C%5CBC%3D24%5C%20cm)
Step-by-step explanation:
Consider right triangle ADH ( it is right triangle, because CH is the altitude). In this triangle, the hypotenuse AD = 8 cm and the leg DH = 4 cm. If the leg is half of the hypotenuse, then the opposite to this leg angle is equal to 30°.
By the Pythagorean theorem,
![AD^2=AH^2+DH^2\\ \\8^2=AH^2+4^2\\ \\AH^2=64-16=48\\ \\AH=\sqrt{48}=4\sqrt{3}\ cm](https://tex.z-dn.net/?f=AD%5E2%3DAH%5E2%2BDH%5E2%5C%5C%20%5C%5C8%5E2%3DAH%5E2%2B4%5E2%5C%5C%20%5C%5CAH%5E2%3D64-16%3D48%5C%5C%20%5C%5CAH%3D%5Csqrt%7B48%7D%3D4%5Csqrt%7B3%7D%5C%20cm)
AL is angle A bisector, then angle A is 60°. Use the angle's bisector property:
![\dfrac{CA}{CD}=\dfrac{AH}{HD}\\ \\\dfrac{CA}{CD}=\dfrac{4\sqrt{3}}{4}=\sqrt{3}\Rightarrow CA=\sqrt{3}CD](https://tex.z-dn.net/?f=%5Cdfrac%7BCA%7D%7BCD%7D%3D%5Cdfrac%7BAH%7D%7BHD%7D%5C%5C%20%5C%5C%5Cdfrac%7BCA%7D%7BCD%7D%3D%5Cdfrac%7B4%5Csqrt%7B3%7D%7D%7B4%7D%3D%5Csqrt%7B3%7D%5CRightarrow%20CA%3D%5Csqrt%7B3%7DCD)
Consider right triangle CAH.By the Pythagorean theorem,
![CA^2=CH^2+AH^2\\ \\(\sqrt{3}CD)^2=(CD+4)^2+(4\sqrt{3})^2\\ \\3CD^2=CD^2+8CD+16+48\\ \\2CD^2-8CD-64=0\\ \\CD^2-4CD-32=0\\ \\D=(-4)^2-4\cdot 1\cdot (-32)=16+128=144\\ \\CD_{1,2}=\dfrac{-(-4)\pm\sqrt{144}}{2\cdot 1}=\dfrac{4\pm 12}{2}=-4,\ 8](https://tex.z-dn.net/?f=CA%5E2%3DCH%5E2%2BAH%5E2%5C%5C%20%5C%5C%28%5Csqrt%7B3%7DCD%29%5E2%3D%28CD%2B4%29%5E2%2B%284%5Csqrt%7B3%7D%29%5E2%5C%5C%20%5C%5C3CD%5E2%3DCD%5E2%2B8CD%2B16%2B48%5C%5C%20%5C%5C2CD%5E2-8CD-64%3D0%5C%5C%20%5C%5CCD%5E2-4CD-32%3D0%5C%5C%20%5C%5CD%3D%28-4%29%5E2-4%5Ccdot%201%5Ccdot%20%28-32%29%3D16%2B128%3D144%5C%5C%20%5C%5CCD_%7B1%2C2%7D%3D%5Cdfrac%7B-%28-4%29%5Cpm%5Csqrt%7B144%7D%7D%7B2%5Ccdot%201%7D%3D%5Cdfrac%7B4%5Cpm%2012%7D%7B2%7D%3D-4%2C%5C%208)
The length cannot be negative, so CD=8 cm and
![CA=\sqrt{3}CD=8\sqrt{3}\ cm](https://tex.z-dn.net/?f=CA%3D%5Csqrt%7B3%7DCD%3D8%5Csqrt%7B3%7D%5C%20cm)
In right triangle ABC, angle B = 90° - 60° = 30°, leg AC is opposite to 30°, and the hypotenuse AB is twice the leg AC. Hence,
![AB=2CA=16\sqrt{3}\ cm](https://tex.z-dn.net/?f=AB%3D2CA%3D16%5Csqrt%7B3%7D%5C%20cm)
By the Pythagorean theorem,
![BC^2=AB^2-AC^2\\ \\BC^2=(16\sqrt{3})^2-(8\sqrt{3})^2=256\cdot 3-64\cdot 3=576\\ \\BC=24\ cm](https://tex.z-dn.net/?f=BC%5E2%3DAB%5E2-AC%5E2%5C%5C%20%5C%5CBC%5E2%3D%2816%5Csqrt%7B3%7D%29%5E2-%288%5Csqrt%7B3%7D%29%5E2%3D256%5Ccdot%203-64%5Ccdot%203%3D576%5C%5C%20%5C%5CBC%3D24%5C%20cm)