1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jasenka [17]
3 years ago
14

The length of a rectangular patio is 14 feet more than its width, 2w. The area of a patio, A(w), can be represented by the funct

ion
Mathematics
1 answer:
nydimaria [60]3 years ago
5 0

Answer: 4w^2 + 28w.

Step-by-step explanation:

Width of the rectangle= 2w

Length if the rectangle= 2w+14

Area of a rectangle= length×width

= 2w(2w+14)

= 4w^2 + 28w

The area of the rectangular patio A(w) is 4w^2 + 28w.

You might be interested in
Find the value of x in a triangle . If the hypotenuse of the triangle is 10 , the opposite is x+2 and the adjacent is x.​
Sauron [17]

Answer:

x = 6

Step-by-step explanation:

using Pythagoras' identity in the right triangle.

the square on the hypotenuse is equal to the sum of the squares on the other 2 sides , that is

x² + (x + 2)² = 10² ← expand parenthesis on left side and simplify

x² + x² + 4x + 4 = 100 ( subtract 100 from both sides )

2x² + 4x - 96 = 0 ( divide through by 2 )

x² + 2x - 48 = 0

(x + 8)(x - 6) = 0 ← in factored form

equate each factor to zero and solve for x

x + 8 = 0 ⇒ x = - 8

x - 6 = 0 ⇒ x = 6

however, x > 0 , then x = 6

8 0
2 years ago
What is the distance between the points (3, 7) and (15, 16) on a coordinate
AysviL [449]

answer: a 13 units. its 13 units bc 13+3=16 soooooooooooo yeahhhhhhhh

6 0
4 years ago
Please help me to prove this!​
Ymorist [56]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π              → A + B = π - C

                                              → B + C = π - A

                                              → C + A = π - B

                                              → C = π - (B +  C)

Use Sum to Product Identity:  cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B

Use the Double Angle Identity: sin 2A = 2 sin A · cos A

Use the Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → Middle:</u>

\text{LHS:}\qquad \qquad \cos \bigg(\dfrac{A}{2}\bigg)+\cos \bigg(\dfrac{B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Sum to Product:}\qquad 2\cos \bigg(\dfrac{\frac{A}{2}+\frac{B}{2}}{2}\bigg)\cdot \cos \bigg(\dfrac{\frac{A}{2}-\frac{B}{2}}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad \quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)

\text{Sum/Difference:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)

\text{Double Angle:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{2(A+B)}{2(2)}\bigg)\\\\\\.\qquad \qquad  \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+2\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)

\text{Factor:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]

\text{Cofunction:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{2\pi-(A+B)}{4}\bigg)\bigg]

\text{Sum to Product:}\ 2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \cos \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \cos \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)

\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{\pi -C}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)

LHS = Middle \checkmark

<u>Proof Middle → RHS:</u>

\text{Middle:}\qquad 4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)\\\\\\\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)

Middle = RHS \checkmark

3 0
3 years ago
Perimeter 94 cm and length 39. What’s the width
ruslelena [56]

Answer:

8

Step-by-step explanation:

Take the length and multiply it by 2. then take your answer and multiply it by the perimeter. Then, take that answer and divide it by 2. Hope this helps :)

6 0
3 years ago
Read 2 more answers
6.6 x 1021 in standard notation
Gre4nikov [31]

Answer:

6,600,000,000,000,000,000,000

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • What are the solutions of 4 + 5t &lt; 19?
    9·2 answers
  • What is the minimum of the data?
    11·1 answer
  • For the function f(x) = –2(x + 3)2 − 1, identify the vertex, domain, and range.
    5·2 answers
  • What is w=138.24/9.6×3.2
    10·2 answers
  • A spreadsheet used by accountants for Company XYZ contains 25 fields in which data is manually entered. If historical data revea
    9·1 answer
  • Assume markup is based on selling price. Solve for the selling price
    10·2 answers
  • Find the area, <br> 8 cm<br> 6 cm<br> 6 cm
    10·2 answers
  • 6r + 7 = 13 + 7r what is r
    8·2 answers
  • Heeeeeeeeeeeeeeeeeelp
    9·1 answer
  • when camping alone , mr adam uses all of the water in 12 days, then when mrs adams and mr adams camp together they use all of th
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!