1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergejj [24]
3 years ago
5

Please help me to prove this!​

Mathematics
1 answer:
Ymorist [56]3 years ago
3 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π              → A + B = π - C

                                              → B + C = π - A

                                              → C + A = π - B

                                              → C = π - (B +  C)

Use Sum to Product Identity:  cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B

Use the Double Angle Identity: sin 2A = 2 sin A · cos A

Use the Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → Middle:</u>

\text{LHS:}\qquad \qquad \cos \bigg(\dfrac{A}{2}\bigg)+\cos \bigg(\dfrac{B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Sum to Product:}\qquad 2\cos \bigg(\dfrac{\frac{A}{2}+\frac{B}{2}}{2}\bigg)\cdot \cos \bigg(\dfrac{\frac{A}{2}-\frac{B}{2}}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad \quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)

\text{Sum/Difference:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)

\text{Double Angle:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{2(A+B)}{2(2)}\bigg)\\\\\\.\qquad \qquad  \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+2\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)

\text{Factor:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]

\text{Cofunction:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{2\pi-(A+B)}{4}\bigg)\bigg]

\text{Sum to Product:}\ 2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \cos \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \cos \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)

\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{\pi -C}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)

LHS = Middle \checkmark

<u>Proof Middle → RHS:</u>

\text{Middle:}\qquad 4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)\\\\\\\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)

Middle = RHS \checkmark

You might be interested in
A blueprint for a building includes a rectangular room that measures 3 inches long and 5.5 inches wide. The scale for the bluepr
Ganezh [65]

Answer:

30 ft. x 55ft

Step-by-step explanation:

3 x 5.5

1 inch = 10 ft

3 * 10 = 30

5.5 = 55

30' x 55'

4 0
3 years ago
Estimate the value of 68x401÷198
Soloha48 [4]
Round all of the numbers to the nearest 10 then solve the problem like normal
7 0
3 years ago
Read 2 more answers
Suppose a classroom teacher wants to measure whether offering candy as a reward will increase the number of times that a student
ahrayia [7]

Answer:

C) Matched pairs

Step-by-step explanation:

Matched samples (also called matched pairs, paired samples or dependent samples) is a type of sampling that involves pairing participants that share every characteristic except for the one under study. The paired participants could be same individuals studied at different time such as:

  1. The study of same participants before and after an interference.
  2. The study of the same participants at two different interference.
5 0
3 years ago
Help me please no coin thots I will report please explain your answer
Leokris [45]
Should be equal to. sorry if its incorrect, but that's what i would go with.

7 0
3 years ago
Read 2 more answers
Point p was rotated about the origin (0,0) by -15 degrees.<br><br> Which point is the image of P?
Airida [17]

Answer:

the answer is d.

Step-by-step explanation:

8 0
3 years ago
Other questions:
  • Help me please on my homework it's due today!
    11·2 answers
  • Simplify 10 – 3x – 13 + 5x<br><br> A. 2x – 3<br><br> B. 1<br><br> C. 3 – 3x<br><br> D. 3 – 2x
    12·2 answers
  • Which of the following is a function ?
    9·1 answer
  • What is the product in lowest terms?9/14times (-7/12)
    13·1 answer
  • Martin is 6 years younger than his sister. The sum of their ages is no more than 22 years. use x represents Martin's sister's ag
    14·2 answers
  • At a particular restaurant, each mini hotdog has 80 calories and each pizza roll has 50 calories. A combination meal with mini h
    6·1 answer
  • What is 5.2x10^4 in standard form​
    6·1 answer
  • O is the centre of the circle. AB is a diameter.
    8·1 answer
  • 5. ¿Cuál es la expresión algebraica que representa el área de la siguiente figura?
    8·1 answer
  • PLEASE HELP MEEEEEEEEEEEEEEEE
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!