1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergejj [24]
3 years ago
5

Please help me to prove this!​

Mathematics
1 answer:
Ymorist [56]3 years ago
3 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π              → A + B = π - C

                                              → B + C = π - A

                                              → C + A = π - B

                                              → C = π - (B +  C)

Use Sum to Product Identity:  cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B

Use the Double Angle Identity: sin 2A = 2 sin A · cos A

Use the Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → Middle:</u>

\text{LHS:}\qquad \qquad \cos \bigg(\dfrac{A}{2}\bigg)+\cos \bigg(\dfrac{B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Sum to Product:}\qquad 2\cos \bigg(\dfrac{\frac{A}{2}+\frac{B}{2}}{2}\bigg)\cdot \cos \bigg(\dfrac{\frac{A}{2}-\frac{B}{2}}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad \quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)

\text{Sum/Difference:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)

\text{Double Angle:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{2(A+B)}{2(2)}\bigg)\\\\\\.\qquad \qquad  \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+2\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)

\text{Factor:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]

\text{Cofunction:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{2\pi-(A+B)}{4}\bigg)\bigg]

\text{Sum to Product:}\ 2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \cos \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \cos \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)

\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{\pi -C}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)

LHS = Middle \checkmark

<u>Proof Middle → RHS:</u>

\text{Middle:}\qquad 4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)\\\\\\\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)

Middle = RHS \checkmark

You might be interested in
If a car has tires with a diameter of 28 inches and is traveling at 55 mph, how fast are its tires spinning, in rpm^ prime s (re
Aleksandr-060686 [28]

Answer:

The tires are spinning at 660.49 revolutions per minute.

Step-by-step explanation:

The speed of the tires (v) is the same that the speed of the car, so to find the angular velocity of the tires we need to use the equation:

\omega = \frac{v}{r}

Where:

r: is the radius of the tires = d/2 = 28 inches/2 = 14 inches

\omega = \frac{55 mph}{14 inches*\frac{1 mile}{63360 inches}} = 2.49 \cdot 10^{5} \frac{rad}{h}*\frac{1 h}{60 min}*\frac{1 rev}{2\pi rad} = 660.49 rpm              

Therefore, the tires are spinning at 660.49 revolutions per minute.

   

I hope it helps you!          

5 0
3 years ago
Line segment Y A is an altitude of ΔXYZ. What is the length of Line segment Y A?
worty [1.4K]

Answer:

A on edge

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
A student bought some pens at 8 each and some pencils at 31.50 each. If the total
Wittaler [7]

Step-by-step explanation:

Letthenumberofpensbexand

numberofpencilsbey

then

x+y=16ory=16−x

andtheirvalue

8x+1.5y=50

8x+(

2

3

)(16−x)=50

8x+24−(

2

3

)x=50

8x−(

2

3

)x=50−24

(

2

13x

)=26∴x=4

theny=16−x=16−4=12

5 0
2 years ago
Lucas’s computer took 480 seconds to download 30 songs. How many seconds per song did it take his computer to download?
Arte-miy333 [17]

Answer:

16 seconds per download

Step-by-step explanation:

480/30 = 16 seconds

4 0
3 years ago
Read 2 more answers
Classify the triangle by its sides, and by its angles ​
ivolga24 [154]
There is no triangle
5 0
2 years ago
Other questions:
  • Find the missing side lengths. leave your answers as radicals in simplest form.
    14·1 answer
  • What does 2/3 * 14/6 equal. Please show work
    12·1 answer
  • Rectangle TUVW is on a coordinate plane at T (a,b), U (a + 2, b + 2), V (a + 5, b - 1). What is the slope of the line that is pa
    11·2 answers
  • The spinner is divided into 8 equal parts. Find the theoretical probability
    14·1 answer
  • Make an equation to find the area of this figure.
    10·1 answer
  • Plz Help your fav. Marshmello i wasn' t,,,,, xx born yesterday.
    7·2 answers
  • X (0,6) y (-3,15) what are the slope and y intercept
    11·1 answer
  • Solve for X<br>4x + 8 = 2x + 2​
    11·2 answers
  • If 20 yards of carpet weighs 30 pounds, how much do 34 yards weigh in pounds?
    11·2 answers
  • If a pound of rolled oats costs $12, how many ounces can be bought for $4.35?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!