1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergejj [24]
3 years ago
5

Please help me to prove this!​

Mathematics
1 answer:
Ymorist [56]3 years ago
3 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π              → A + B = π - C

                                              → B + C = π - A

                                              → C + A = π - B

                                              → C = π - (B +  C)

Use Sum to Product Identity:  cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B

Use the Double Angle Identity: sin 2A = 2 sin A · cos A

Use the Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → Middle:</u>

\text{LHS:}\qquad \qquad \cos \bigg(\dfrac{A}{2}\bigg)+\cos \bigg(\dfrac{B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Sum to Product:}\qquad 2\cos \bigg(\dfrac{\frac{A}{2}+\frac{B}{2}}{2}\bigg)\cdot \cos \bigg(\dfrac{\frac{A}{2}-\frac{B}{2}}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad \quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)

\text{Sum/Difference:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)

\text{Double Angle:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{2(A+B)}{2(2)}\bigg)\\\\\\.\qquad \qquad  \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+2\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)

\text{Factor:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]

\text{Cofunction:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{2\pi-(A+B)}{4}\bigg)\bigg]

\text{Sum to Product:}\ 2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \cos \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \cos \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)

\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{\pi -C}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)

LHS = Middle \checkmark

<u>Proof Middle → RHS:</u>

\text{Middle:}\qquad 4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)\\\\\\\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)

Middle = RHS \checkmark

You might be interested in
HELPPPPP PLZZZZZZZZZZ
lianna [129]

Answer:

a. one

b. three

c. eleven

Step-by-step explanation:

just count the dots ??

6 0
3 years ago
Read 2 more answers
Find the missing probability in the table below.
Alla [95]
X          1           2        3         4
p(x)    0.40    0.20   0.15     ?

If the items are only 4. The total of the probability must be 1 or 100%

1 - 0.40 - 0.20 - 0.15 = 0.25

The probability of 4 is 0.25.
7 0
3 years ago
Please help 15 points
Gre4nikov [31]

Answer:

i really don’t know ,

sorry , I’m so sorry

7 0
3 years ago
Find the implied domain of the function
Marat540 [252]
To find the domain you need to set the denominator not equal to zero
3 0
3 years ago
What is the midpoint of a line segment with the endpoints (-4, -3) and (7, -5)
Katyanochek1 [597]
Midpoint Formula: (\frac{x+x}{2},\frac{y+y}{2})
Midpoint = (\frac {-4+7}{2},\frac {-3-5}{2})
Midpoint = (\frac {3}{2},\frac {-8}{2})
Midpoint = (\frac {3}{2}, -4)
So, the midpoint of the endpoints (-4,-3) and (7,-5) is (\frac {3}{2}, -4).
Have a nice day! ♪
4 0
3 years ago
Read 2 more answers
Other questions:
  • Choose the equation of the horizontal line that passes through the point (-2,-1)
    8·1 answer
  • Mr. Charles cut fresh Ross from his garden and gave 10 to his neighbor. Then he gave half of what was left to his niece he kept
    13·1 answer
  • one number is five more than twice another . if their sum is decreased by ten the result is twenty. find the numbers
    11·1 answer
  • What properties allow transformations to be used as problem-solving tools​
    8·1 answer
  • Q3: The number of teachers in a school is increased from 45 to 55, express the number of increase in a ratio?
    7·1 answer
  • The problem involves a conversion from feet to miles. How many feet are in one mile? Use the Internet or another resource if you
    13·2 answers
  • QUICK QUICK QUICK<br> What is the solution set for this inequality? <br><br> - 6x + 30 &gt; - 12
    11·2 answers
  • Find the midpoint of the segment with the following endpoints.<br><br> (10,6) and (3,1)
    13·1 answer
  • HELPPPPP!!!
    8·1 answer
  • Write the equation of the line that contains (-4, -3) and is parallel to the line x+2y=-10
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!