1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergejj [24]
3 years ago
5

Please help me to prove this!​

Mathematics
1 answer:
Ymorist [56]3 years ago
3 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π              → A + B = π - C

                                              → B + C = π - A

                                              → C + A = π - B

                                              → C = π - (B +  C)

Use Sum to Product Identity:  cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B

Use the Double Angle Identity: sin 2A = 2 sin A · cos A

Use the Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → Middle:</u>

\text{LHS:}\qquad \qquad \cos \bigg(\dfrac{A}{2}\bigg)+\cos \bigg(\dfrac{B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Sum to Product:}\qquad 2\cos \bigg(\dfrac{\frac{A}{2}+\frac{B}{2}}{2}\bigg)\cdot \cos \bigg(\dfrac{\frac{A}{2}-\frac{B}{2}}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad \quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)

\text{Sum/Difference:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)

\text{Double Angle:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{2(A+B)}{2(2)}\bigg)\\\\\\.\qquad \qquad  \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+2\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)

\text{Factor:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]

\text{Cofunction:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{2\pi-(A+B)}{4}\bigg)\bigg]

\text{Sum to Product:}\ 2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \cos \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \cos \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)

\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{\pi -C}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)

LHS = Middle \checkmark

<u>Proof Middle → RHS:</u>

\text{Middle:}\qquad 4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)\\\\\\\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)

Middle = RHS \checkmark

You might be interested in
the population of South Africa is four times the population of Greece. if the population of south Africa is 44 million, write an
bixtya [17]

From the problem statement, the population of South Africa is four times the population of Greece.

The population of Greece is 11 million

<em>Given data</em>

Population of South Africa is 44 million,

Let the population of Greece be x

Hence the population of South Africa will be = 4*x

Hence the expression becomes

44million = 4x

Let us divide both side by 4 to find the population of Greece

x= 44million/4

x = 11 million

Hence the population of Greece is 11 million

Learn more about cross multiplication :

brainly.com/question/294036

7 0
2 years ago
chi has a big pile of nickels. he says, "even if I use 100 of these nickels, I'll still have 95% of my original pile." how many
Bond [772]
Chi would have two thousand nickels because if 100 nickels is 5% and 100 divided 5 is 20 so a 100 times 20 is 2000
3 0
3 years ago
Wil mark brainliest! Which graph represents the function f(x)=−|x−3|+1 ?
BigorU [14]

Answer: D. that last graph

Step-by-step explanation:

5 0
3 years ago
The temperature of a city during a week was 35°C, 34°C, 36°C, 38°C, 40°C, 39°C and 44°C. What was the average daily temperature
Dovator [93]
38°C
average=sum/number
=266/7 = 38
4 0
3 years ago
The diameter of a circle pass through
Neko [114]
The diameter of a circle passes through the middle
8 0
3 years ago
Other questions:
  • Which angles are pairs of alternate exterior angles? Check all that apply.
    6·1 answer
  • 3. What is the amount of social security withheld?
    7·1 answer
  • What is the length of a rectangle that is the perimeter of 114 units?
    5·1 answer
  • Write this expression using exponents<br> 34
    9·1 answer
  • The expression below is a sum of cubes.<br> 64x3 + 125<br> O A. True<br> O B. False
    12·2 answers
  • 7 Which of following equations represents the
    6·1 answer
  • Write the slope- intercept form of the equation
    14·1 answer
  • What is the length of the indicated side?<br><br>​
    8·1 answer
  • Find f(5) for f(x)=1/4(2)^x<br> A. 2<br> B. 4<br> C. 32<br> D. 8
    7·1 answer
  • Order the following numbers from least to greatest: 4.06, 4.6, 4.72, 4.59. PLEASE HELP 100 POINTS
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!