1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergejj [24]
3 years ago
5

Please help me to prove this!​

Mathematics
1 answer:
Ymorist [56]3 years ago
3 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π              → A + B = π - C

                                              → B + C = π - A

                                              → C + A = π - B

                                              → C = π - (B +  C)

Use Sum to Product Identity:  cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B

Use the Double Angle Identity: sin 2A = 2 sin A · cos A

Use the Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → Middle:</u>

\text{LHS:}\qquad \qquad \cos \bigg(\dfrac{A}{2}\bigg)+\cos \bigg(\dfrac{B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Sum to Product:}\qquad 2\cos \bigg(\dfrac{\frac{A}{2}+\frac{B}{2}}{2}\bigg)\cdot \cos \bigg(\dfrac{\frac{A}{2}-\frac{B}{2}}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad \quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)

\text{Sum/Difference:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)

\text{Double Angle:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{2(A+B)}{2(2)}\bigg)\\\\\\.\qquad \qquad  \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+2\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)

\text{Factor:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]

\text{Cofunction:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{2\pi-(A+B)}{4}\bigg)\bigg]

\text{Sum to Product:}\ 2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \cos \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \cos \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)

\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{\pi -C}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)

LHS = Middle \checkmark

<u>Proof Middle → RHS:</u>

\text{Middle:}\qquad 4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)\\\\\\\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)

Middle = RHS \checkmark

You might be interested in
The label on Emma's muffin said that one serving provided 6 grams of fat, which is 10% of the recommended daily amount. What is
valentina_108 [34]

0.6 because 6 divided by 10% is 0.6

4 0
2 years ago
Can a right triangle ever have an obtuse angle?
SCORPION-xisa [38]
No because a right triangle always has a right angle
5 0
3 years ago
Read 2 more answers
Which of the following inequalities define a region that contains all of Quadrant 3?
Bingel [31]
Refer to the diagram shown below.

The shaded area satisfies the two inequalities
y > x - 1
and
y < 1 -x

Answer: A and D

3 0
3 years ago
Mia counts on in steps of 100 she starts at 946. Write the next number she says
Arada [10]

Answer:

100+946=1046

Ao the next no. Is 1046

4 0
1 year ago
What is the lateral area of the cone? 10 yd and 12.1 yd
Harman [31]

Answer:

The lateral area will be "381 yd²". A further solution is provided below.

Step-by-step explanation:

The given values are:

Radius of cone,

r = 10 yd

Height of cone,

L = 12.1 yd

As we know,

The lateral surface area of cone is:

=  \pi r L

On substituting the values, we get

=  \frac{22}{7}\times 10\times 12.1

=  \frac{22}{7}\times 121

=  380.28 \ yd^2

0r,

=  381 \ yd^2

8 0
3 years ago
Other questions:
  • A square technology chip has an area of 25 square centimeters how long is each side of the chip
    13·1 answer
  • Calculate the derivative of the function. hint [see example 1.] f(x) = 7x + x2
    12·1 answer
  • Solve for x: −4|x + 5| = −16
    12·1 answer
  • Flora made 7 withdrawals of $75 each from her bank account. How much did she withdraw in total?
    5·1 answer
  • Let X and Y be random variables with the following joint moment generating function: M_{X,Y}(s,t)=0.1+0.2e^s+0.3e^t+0.4e^{s+t}
    5·1 answer
  • James says tat 5/5 is greater than 9/10 is he correct Explain
    13·2 answers
  • Look at the problem that is below this question.
    9·1 answer
  • (91/3+42/3)/7-(-12) <br><br> plzzz help me with this
    9·1 answer
  • Can someone please help me
    8·1 answer
  • HElp me find the IQR please
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!