\left(\mathrm{Decimal:\quad }x=-0.75\right)
hope it helps :P
Answer:
c) -x^3 + x^2 - 1
Step-by-step explanation:
Given: u (x) = x^5 - x^4 +x^2 and v(x) = -x^2
(u/v)(x) = u(x)/v(x)
Now plug in the given functions in the above formula, we get
= (x^5 - x^4 + x^2) / -x^2
We can factorize the numerator.
In x^5 - x^4 + x^2. the common factor is x^2, so we can take it out and write the remaining terms in the parenthesis.
= x^2 (x^3 - x^2 + 1) / - x^2
Now we gave x^2 both in the numerator and in the denominator, we can cancel it out.
(u/v)(x) = (x^3 - x^2 + 1) / -1
When we dividing the numerator by -1, we get
(u/v)(x) = -x^3 + x^2 - 1
Answer: c) -x^3 + x^2 - 1
Hope you will understand the concept.
Thank you.
Hey!
Hope this helps...
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
x + y = 3
x = 3 - y
y = 2x - 15
y = 2(3 - y) - 15
y = 6 - 2y - 15
y = -2y - 9
3y = -9
y = -3
y = 2x - 15
-3 = 2x - 15
-2x = -12
x = 6
So...
The answer is: (6, -3)
A) -9
-7(x+9)=9(x-5)-14x
-7x-63=9x-45-14x
-45 -45
-7x-18=9x-14x
+7x +7x
-18=9x+7x-14x
-18=2x
(-18)/2=(2x)/2
-9=x