Answer:
yes
Explanation:
Although plants use photosynthesis to produce glucose, they use cellular respiration to release energy from the glucose.
<h3>
Answer:</h3>
0.819 mol Ag
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
4.93 × 10²³ atoms Ag
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- Set up:

- Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.818665 mol Ag ≈ 0.819 mol Ag
1. Decreases by 4. (B)
2. The atomic number changes. (B)
3. 56/26 Fe. (C)
4. Potassium-40;t1/2=25 days. (B)
5. Takes place in the upper atmosphere. (A)
Explanation:
Molar mass of HBr = 81 g/mol
Molar mass of nitrogen dioxide gas = 46 g/mol
Molar mass of ethane = 30 g/mol
Graham's Law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows the equation:

So, the gas with least molar mass will effuse out fastest from the container and that is ethane gas.
The formula for average kinetic energy is:

where,
k = Boltzmann’s constant = 
T = temperature = 273.15 K ( at STP)
As we can see from the formula that kinetic energy depends upon only temperature of the gas molecule.
So, from this we can say that all the gas molecules have the same average kinetic energy at this temperature.