Answer:
(B) 20
Step-by-step explanation:
Let small puppet be represented by-----------------s
Let large puppet be represented by-----------------l
Total number of puppets expression will be: s+l =25---------a
The expression for total costs will be : 1$ s + $2l=$30-------b
Equation a can be written as; s= 25-l ------------c
Use equation c in equation b as
$1( 25-l )+$ 2l = $30
25-l + 2l = 30
25+l =30
l= 30-25 =5
l, large puppets = 5
s, small puppets = 25-5 = 20
Answer choice A is incorrect because 25 is the total number of all puppets
Answer choice C and D are incorrect because the numbers are less that that of small puppets.
A graph of the equation shows the appropriate choice to be
C. 2_____
If you would rather, you can look at the value of the discriminant. For the equation y = ax²+bx+c, the discriminant (d) is
d = b²-4ac
For your equation, this evaluates to
d = (-8)²-4(2)(5) = 64 -40 =
24When the discriminant is
positive, the function has
two real roots (2 x-intercepts). When it is zero, there is only one x-intercept, and when it is negative, there are none (the roots are complex).
9514 1404 393
Answer:
Step-by-step explanation:
Let x and y represent the weights of the large and small boxes, respectively. The problem statement gives rise to the system of equations ...
x + y = 85 . . . . . combined weight of a large and small box
70x +50y = 5350 . . . . combined weight of 70 large and 50 small boxes
We can subtract 50 times the first equation from the second to find the weight of a large box.
(70x +50y) -50(x +y) = (5350) -50(85)
20x = 1100 . . . . simplify
x = 55 . . . . . . . divide by 20
Using this in the first equation, we can find the weight of a small box.
55 +y = 85
y = 30 . . . . . . . subtract 55
A large box weighs 55 pounds; a small box weighs 30 pounds.