Answer:
a) 25.15
b)
x = 1
y = t
z = (4pi)^2 + t *(8pi) = 4pi(4pi + 2t)
c) (x,y) = (1, -2pi)
Step-by-step explanation:
a)
First lets calculate the velocity, that is, the derivative of c(t) with respect to t:
v(t) = (-sin(t), cos(t), 2t)
The velocity at t0=4pi is:
v(4pi) = (0, 1, 8pi)
And the speed will be:
s(4pi) = √(0^2+1^2+ (8pi)^2) = 25.15
b)
The tangent line to c(t) at t0 = 4pi has the parametric form:
(x,y,z) = c(4pi) + t*v(4pi)
Since
c(4pi) = (1, 0, (4pi)^2)
The tangent curve has the following components:
x = 1
y = t
z = (4pi)^2 + t *(8pi) = 4pi(4pi + 2t)
c)
The intersection with the xy plane will occurr when z = 0
This happens at:
t1 = -2pi
Therefore, the intersection will occur at:
(x,y) = (1, -2pi)
Answer:
3.472
Step-by-step explanation:
The angle of the semtrical cube times the number of 2 because of the number in the area. So the anser is 3.472.
Answer:
24000 pieces.
Step-by-step explanation:
Given:
Side lengths of cube = 
The part of the truck that is being filled is in the shape of a rectangular prism with dimensions of 8 ft x 6 1/4 ft x 7 1/2 ft.
Question asked:
What is the greatest number of packages that can fit in the truck?
Solution:
First of all we will find volume of cube, then volume of rectangular prism and then simply divide the volume of prism by volume of cube to find the greatest number of packages that can fit in the truck.


Length = 8 foot, Breadth =
, Height =


The greatest number of packages that can fit in the truck = Volume of prism divided by volume of cube
The greatest number of packages that can fit in the truck = 
Thus, the greatest number of packages that can fit in the truck is 24000 pieces.
Answer:440.925
Step-by-step explanation:
Answer:
50.7202
Step-by-step explanation:
(500ml+1000ml) / (29.574 ml per ounce) = 50.72 US Fluid Ounces