Bruh, I swear I'm getting dumber everyday day!!!
Answer:
7m^2n (i think)
Step-by-step explanation:
Answer:
2.67 inches.
Step-by-step explanation:
Assuming that we represent the size of the squares with the letter y, such that after the squares are being cut from each corner, the rectangular length of the box that is formed can now be ( 23 - 2y), the width to be (13 - 2y) and the height be (x).
The formula for a rectangular box = L × B × W
= (23 -2y)(13-2y) (y)
= (299 - 46y - 26y + 4y²)y
= 299y - 72y² + 4y³
Now for the maximum volume:
dV/dy = 0
This implies that:
299y - 72y² + 4y³ = 299 - 144y + 12y² = 0
By using the quadratic formula; we have :

where;
a = 12; b = -144 and c = 299






Since the width is 13 inches., it can't be possible for the size of the square to be cut to be 9.33
Thus, the size of the square to be cut out from each corner to obtain the maximum volume is 2.67 inches.
Assuming you are asking
does -2x+y=6 and y-2x=4 have a solution
look at them
rewrite first equation by switching x and y
y-2x=6 and
y-2x=4
false since they are same values
there is no solution
these 2 lines are paralell
NO SOLUTION
Answer:
C) 52 in^3
Step-by-step explanation:
The first is to determine the formula of the volume of the box, which would be the following:
V = height * length * width
Knowing that we have a rectangular piece we will determine the maximum volume, we will double a distance x (which will be the height) in the width and length of the piece, therefore as it is on both sides, the length and width are defined from the Following way:
length = 10 - 2 * x
width = 8 - 2 * x
height = x
Now we calculate the volume:
V = x * (10-2 * x) * (8-2 * x)
To determine the maximum volume we will give values to x in order to see how it behaves:
Let x = 2.5
V = (5) * (3) * (2.5) = 37.5
Let x = 2
V = (6) * (4) * (2) = 48
Let x = 1.5
V = (7) * (5) * (1.5) = 52.5
Let x = 1
V = (8) * (6) * (1) = 48
Let x = 0.5
V = (9) * (7) * (0.5) = 31.5
It can be seen that the greatest volume is obtained when the height is equal to 1.5 and its volume is 52.5 in ^ 3