256-192= 64
192-144=48
144-108=36
108-81=27
81- 60.8=20.2
60.8-45.6=15.2
45.6-34.2= 11.4
34.2-25.6=8.6
25.6-19.2= 6.4
19.2-14.4= 4.8
Answer:
Step-by-step explanation:
Use SOH CAH TOA to recall how the trig functions fit on a triangle
SOH: Sin(Ф)= Opp / Hyp
CAH: Cos(Ф)= Adj / Hyp
TOA: Tan(Ф) = Opp / Adj
5)
Adj = 14
Hyp = 26
∠X
so use
CAH
Cos(X) = 14/26
X = arcCos(14/26)
X = 57.421°
X = 57.4 ° ( rounded to nearest 10th )
6)
∠X
Hyp = 46
Opp = 12
use SOH
Sin(x) = 12/46
X = arcSin(12/46)
X = 15.121°
X = 15.1 ° ( rounded to nearest 10th )
7)
∠X
Adj = 29
Opp = 24
use TOA
Tan(x) = 29 / 24
X = arcTan( 29 /24)
X = 50.389
X = 50.4 ° ( rounded to nearest 10th )
8)
∠X
Adj = 22
Opp = 6
use TOA agian
Tan(x) = 6 / 22
X = arcTan(6/22)
X = 5.194
X = 5.2 ° ( rounded to the nearest 10th )
:)
Answer:
A. (-13,-3)
Step-by-step explanation:
Solve the system of two equations:

From the second equation:

Substitute it into the first equation:

So,

The solution is (-13,-4)
Answer:
x = √53
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Trigonometry</u>
- [Right Triangles Only] Pythagorean Theorem: a² + b² = c²
Step-by-step explanation:
<u>Step 1: Define</u>
We are given a right triangle. We can use PT to solve for the missing length.
<u>Step 2: Identify Variables</u>
Leg <em>a</em> = 6
Leg <em>b</em> = <em>x</em>
Hypotenuse <em>c</em> = √89
<u>Step 3: Solve for </u><em><u>x</u></em>
- Set up equation: 6² + x² = (√89)²
- Isolate <em>x</em> term: x² = (√89)² - 6²
- Exponents: x² = 89 - 36
- Subtract: x² = 53
- Isolate <em>x</em>: x = √53
Wouldn't it be 6 cm, 8 cm, 10 cm?