Uw=2
w=2/U
ux=y
x=y/u
wx=(2/U)(y/u)
wx=(2y)/(Uu)
Answer: see proof below
<u>Step-by-step explanation:</u>
Use the Double Angle Identity: sin 2Ф = 2sinФ · cosФ
Use the Sum/Difference Identities:
sin(α + β) = sinα · cosβ + cosα · sinβ
cos(α - β) = cosα · cosβ + sinα · sinβ
Use the Unit circle to evaluate: sin45 = cos45 = √2/2
Use the Double Angle Identities: sin2Ф = 2sinФ · cosФ
Use the Pythagorean Identity: cos²Ф + sin²Ф = 1
<u />
<u>Proof LHS → RHS</u>
LHS: 2sin(45 + 2A) · cos(45 - 2A)
Sum/Difference: 2 (sin45·cos2A + cos45·sin2A) (cos45·cos2A + sin45·sin2A)
Unit Circle: 2[(√2/2)cos2A + (√2/2)sin2A][(√2/2)cos2A +(√2/2)·sin2A)]
Expand: 2[(1/2)cos²2A + cos2A·sin2A + (1/2)sin²2A]
Distribute: cos²2A + 2cos2A·sin2A + sin²2A
Pythagorean Identity: 1 + 2cos2A·sin2A
Double Angle: 1 + sin4A
LHS = RHS: 1 + sin4A = 1 + sin4A 
Answer:
add them both. 4,3 is your answer
Step-by-step explanation:
2/3 and 6/9 equal 18/18 = 1 whole
Answer:
Step-by-step explanation:
This is a special right triangle that has 30, 60 and 90 degress corners. Because it is a special triangle, it also has side length values which always consistent relationship with one another.
Side opposite the 30° angle: x
Side opposite the 90° angle: 2x
So, 
Then use Pythagorean theorem. 



