With the help of the <em>area</em> formulae of rectangles and triangles and the concept of <em>surface</em> area, the <em>surface</em> area of the composite figure is equal to 276 square centimeters.
<h3>What is the surface area of a truncated prism?</h3>
The <em>surface</em> area of the <em>truncated</em> prism is the sum of the areas of its six faces, which are combinations of the areas of rectangles and <em>right</em> triangles. Then, we proceed to determine the <em>surface</em> area:
A = (12 cm) · (4 cm) + 2 · (3 cm) · (4 cm) + 2 · (12 cm) · (3 cm) + 2 · 0.5 · (12 cm) · (5 cm) + (5 cm) · (4 cm) + (13 cm) · (4 cm)
A = 48 cm² + 24 cm² + 72 cm² + 60 cm² + 20 cm² + 52 cm²
A = 276 cm²
With the help of the <em>area</em> formulae of rectangles and triangles and the concept of <em>surface</em> area, the <em>surface</em> area of the composite figure is equal to 276 square centimeters.
To learn more on surface areas: brainly.com/question/2835293
#SPJ1
Answer:
4.2 cm
Step-by-step explanation:
I would love to help you but you haven’t given the sets
Answer:
y = -1x -4
Step-by-step explanation:
The point slope equation is y - y1 = m(x -x1).
You will have to plug in the points (-3, -1) and (2, -6).
y - (-1) = m (x - (-3))
To find "m", find y over x.
m = (y2 - y1) / ( x2 - x1)
m = (-6 + 1)/(2 + 3)
m = -5/5
m = -1
Then plug in "m"
y + 1 = -1(x + 3)
then distribute the "m" into the parenthesis and isolate y or subtract 1 from both sides.
y + 1 = -1x - 3
y = -1x -4
Answer: X=2 Y=-6
Step-by-step explanation: