Answer:
H=110
Step-by-step explanation:
since LW=85,W=5,=85+5=90/200=110
The conditional probability illustrates that's there's a 2/8 that the event A occurs.
<h3>How to illustrate the probability?</h3>
It should be noted that probability simply means the likelihood of the occurence of an event.
In this case, it can be delivered that P(AID) and P(DIA) aren't equal.
Hence, P(D|A) has event A as its given event, resulting in 2/8 for a probability.
Learn more about probability on:
brainly.com/question/24756209
#SPJ1
Let's actually find the line of best fit...
m=(nΣyx-ΣyΣx)/(nΣx^2-ΣxΣx)
m=(11*836-130*55)/(11*385-3025)
m=2046/1210
m=93/55
b=(Σy-93Σx/55)/n
b=(55Σy-93Σx)/(55n)
b=(7150-5115)/(55*11)
b=185/55, so the line of best fit is:
y=(93x+185)/55
A) The approximate y-intercept (the value of y when x=0) is 185/55≈3.36.
Which means that those who do not practice at all will win about 3.36 times
B) y(13)=(93x+185)/55
y(13)≈25.34
So after 13 months of practice one would expect to win about 25.34 times.
Answer:
a) 0.50575,
b) 0.042
Step-by-step explanation:
Example 1.5. A person goes shopping 3 times. The probability of buying a good product for the first time is 0.7.
If the first time you can buy good products, the next time you can buy good products is 0.85; (I interpret this as, if you buy a good product, then the next time you buy a good product is 0.85).
And if the last time I bought a bad product, the next time I bought a good one is 0.6. Calculate the probability that:
a) All three times the person bought good goods.
P(Good on 1st shopping event AND Good on 2nd shopping event AND Good on 3rd shopping event) =
P(Good on 1st shopping event) *P(Good on 2nd shopping event | Good on 1st shopping event) * P(Good on 3rd shopping event | 1st and 2nd shopping events yield Good) =
(0.7)(0.85)(0.85) =
0.50575
b) Only the second time that person buys a bad product.
P(Good on 1st shopping event AND Bad on 2nd shopping event AND Good on 3rd shopping event) =
P(Good on 1st shopping event) *P(Bad on 2nd shopping event | Good on 1st shopping event) * P(Good on 3rd shopping event | 1st is Good and 2nd is Bad shopping events) =
(0.7)(1-0.85)(1-0.6) =
(0.7)(0.15)(0.4) =
0.042
18= (d - 0.25d) - 0.25d
18= 0.75d - 0.25d
18= 0.50d
d = 36
the original price was $36