1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iragen [17]
3 years ago
14

An isosceles trapezoid ABCD with height 2 units has all its vertices on the parabola y=a(x+1)(x−5). What is the value of a, if p

oints A and D belong to the x−axis and m∠BAD=60degrees?
Mathematics
1 answer:
True [87]3 years ago
5 0

Answer:

the value of a, if points A and D belong to the x−axis and m∠BAD=60 degrees is 2/√3

Step-by-step explanation:

Trapezoid ABCD with height 2 unit contain Points A and D which may be A(-1,0) and D(5.0)

Vertex of parabola is the point where parabola crosses its axis

Let suppose A and D are two points then draw altitude on them CE where C is on AD

As height of altitude has been given that is 2 then

total angle = 180 degrees

m∠BAD=60 degrees

m∠CEA =180 - 60 -90

             = 30

then the value for  AE = 2/√3.

y=a(x+1)(x−5).

where  2/√3 is right of -1 and 2 unit above x-axis

You might be interested in
Trigonometric ratios, Side length. 15 points AND brainliest.
Oduvanchick [21]

Answer:

Side GI= 2

Step-by-step explanation:

Photo attached, used SOH CAH TOA method.

8 0
3 years ago
If the gradient of the tangent to
Marizza181 [45]

Answer:

Point A(9, 3)

General Formulas and Concepts:

<u>Pre-Algebra</u>  

Order of Operations: BPEMDAS  

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties  

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>  

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}  

<u>Calculus</u>  

Derivatives  

Derivative Notation  

Derivative of a constant is 0  

Basic Power Rule:  

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle y = \sqrt{x}<em />

<em />\displaystyle y' = \frac{1}{6}<em />

<em />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = x^{\frac{1}{2}}
  2. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}x^{\frac{1}{2} - 1}
  3. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}x^{-\frac{1}{2}}
  4. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2x^{\frac{1}{2}}}
  5. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x}}

<u>Step 3: Solve</u>

<em>Find coordinates of A.</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{6} = \frac{1}{2\sqrt{x}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle \frac{1}{3} = \frac{1}{\sqrt{x}}
  3. [Multiplication Property of Equality] Cross-multiply:                                      \displaystyle \sqrt{x} = 3
  4. [Equality Property] Square both sides:                                                           \displaystyle x = 9

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{9}
  2. [√Radical] Evaluate:                                                                                         \displaystyle y = 3

∴ Coordinates of A is (9, 3).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

7 0
3 years ago
Find the inequality represented by the graph pleasseee help me​
gayaneshka [121]

Answer:

y≥1/2x is the answer for this problem

8 0
3 years ago
Hadley buys 7 boxes of markers with 8
Natalka [10]

Answer:

128

Step-by-step explanation:

7×8=56

12×6=72

56+72=128

7 0
3 years ago
Read 2 more answers
Help me pls..........​
Paraphin [41]

Answer:

1000x or 1000 thousand times greater

Step-by-step explanation:

every decimal to the left is 10x greater than the one right of it.

4 0
2 years ago
Other questions:
  • What is tan 30°?<br> 60*<br> 2<br> /<br> 90*<br> 30*<br> с<br> оооооо
    12·1 answer
  • Match each expression with its greatest common factor. 4a + 8 2a2 + 8a 12a2 − 8a 4 − 6a Greatest Common Factor Expression 4 : 2
    14·1 answer
  • How Can A Ratio Be solved (I still dont get it)
    10·1 answer
  • Use the quadratic formula to solve x² + 9x + 10 = 0.
    8·2 answers
  • I giveeee brainlilstttttttt
    10·2 answers
  • Find the perimeter of each figure select the figure that have a perimeter of 20 units
    12·2 answers
  • 9. Which models best illustrates the inequality and its graph
    8·1 answer
  • The graph f(x) = has been translated 3 units to the right and 1 unit up. What is the vertex of the
    15·1 answer
  • SOLVE 10 PLEASE HELP ME I AM VERY CONFUSED. THIS IS DUE IN 10 MINUTES. WILL MARK AS BRAINIEST ANSWER IF CORRECT
    6·2 answers
  • 10. Write an equivalent expression in terms of sine
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!