Answer:
is that the whole question? it looks unfinished to me-
Answer:
16
Step-by-step explanation:
Using proportions, it is found that it takes 886 more mini-bears than regular-bears to have the same weight as one super-bear.
<h3>What is a proportion?</h3>
A proportion is a fraction of a total amount, and the measures are related using a rule of three. Due to this, relations between variables, either direct(when both increase or both decrease) or inverse proportional(when one increases and the other decreases, or vice versa), can be built to find the desired measures in the problem, or equations to find these measures.
10 mini-bears weights to 12.1 grams, hence the weight of a mini-bear is of:
12.1/10 = 1.21 grams.
10 regular bears weights to 23.1 grams, hence the weight of a regular bear is of:
23.1/10 = 2.31 grams.
1 super bear weights to 2250 grams, hence the proportion between the <u>weight of a super bear and the weight of a mini-bear</u> is:
2250/1.21 = 1860.
The proportion between the <u>weight of a super bear and the weight of a regular bear</u> is:
2250/2.31 = 974.
The difference of proportions is given by:
1860 - 974 = 886.
It takes 886 more mini-bears than regular-bears to have the same weight as one super-bear.
More can be learned about proportions at brainly.com/question/24372153
#SPJ1
Answer: -7, 12
Step-by-step explanation:
a+b = 5
a*b = -84
a = 5-b
(5-b)*b = -84
-b^2 + 5b + 84 = 0
(-b - 7)(b + 12) = 0
The roots are -7 and 12.
I'm not sure what â€" stands for
The complete question is
John and Matt are going to fill a pool with 2 different sized hoses. John can fill the pool in 5 hours, while Matt can complete it in 10 hours.How long will it take both to fill the pool? Explain each step in solving this equation.
we know that
<span>John can fill the pool in --------------> 5 hours
</span>therefore
<span>I calculate the amount of pool that John fills in one hour
</span>if John can fill 100% of the pool in----------------> 5 hours
X--------------------------------------> 1 hour
X=1/5=0.20 pool/hour
Matt can fill the pool in --------------> 10 hours
therefore
I calculate the amount of pool that Matt fills in one hour
if Matt can fill 100% of the pool in----------------> 10 hours
X--------------------------------------> 1 hour
X=1/10=0.10 pool/hour
<span>adding both amounts
(0.20+0.10)=0.30 -----------> 30% pool/hour
then
</span>if both can fills 30% of the pool in----------------> 1 hour
100%-------------------------------> X
X=100/30=3.33 hours----------> 3 hours + 19 minutes+ 48 sec
the answer is 3.33 hours (3 hours + 19 minutes+ 48 sec)
<span>The equation to determine the amount of pool filling (y) according to time (t) in hours is given by
</span><span>y=0.30*t
</span>