Geometric sequence general form: a * r^n
For Greg, we are given the elimination of the medicine as a geometric nth term equation:
200 * (0.88)^t
The amount of medicine starts at 200 mg and every hour, decreases by 12%;
To compare the decrease in medicine in the body between the two, it is useful to get them in a common form;
So, using the data provided for Henry, we will also attempt to find a geometric nth term equation that will work if we can:
As a geometric sequence, the first term would be a and the second term would be ar where r = multiplier;
If we divide the second term by the first term, we will therefore get r, which is 0.94 for Henry;
We can check that the data for Henry can be represented as a geometric sequence by using the multiplier (r) to see if we can generate the third value of the data;
We do this like so:
282 * (0.94)^2 = 249.18 (correct to 2 d.p)
We can tell that the data for Henry is also a geometric sequence.
So now, we just look at the multiplier for Henry and we find that every hour, the medicine decreases by 6%, half of the rate of decrease for Greg.
The answer is therefore that <span>Henry's body eliminated the antibiotic at half of the rate at which Greg's body eliminated the antibiotic.</span>
Answer:i think d.please dont blame me im not sure.sorry
Step-by-step explanation:
.8 repeating. I believe is this answer.
Answer:
1/7
Step-by-step explanation:
The probability that the Captain hits is \dfrac{1}{2}
2
1
start fraction, 1, divided by, 2, end fraction.
The probability that the pirate hits is \dfrac{2}{7}
7
2
start fraction, 2, divided by, 7, end fraction.
1/2 x 2/7 = 1/7