Answer: OPTION A.
Step-by-step explanation:
You can observe that in the figure CDEF the vertices are:

And in the figure C'D'E'F' the vertices are:

For this case, you can divide any coordinate of any vertex of the figure C'D'E'F' by any coordinate of any vertex of the figure CDEF:
For C'(-8,-4) and C(-2,-1):

Let's choose another vertex. For E'(8,8) and E(2,2):

You can observe that the coordinates of C' are obtained by multiplying each coordinate of C by 4 and the the coordinates of E' are also obtained by multiplying each coordinate of E by 4.
Therefore, the rule that yields the dilation of the figure CDEF centered at the origin is:
→
It has to be B is the one that has to ne correct
2x3=6. So the Greatest Common Factor (GCF) is 6
Answer:
a reflection over the x-axis and then a 90 degree clockwise rotation about the origin
Step-by-step explanation:
Lets suppose triangle JKL has the vertices on the points as follows:
J: (-1,0)
K: (0,0)
L: (0,1)
This gives us a triangle in the second quadrant with the 90 degrees corner on the origin. It says that this is then transformed by performing a 90 degree clockwise rotation about the origin and then a reflection over the y-axis. If we rotate it 90 degrees clockwise we end up with:
J: (0,1) , K: (0,0), L: (1,0)
Then we reflect it across the y-axis and get:
J: (0,1), K:(0,0), L: (-1,0)
Now we go through each answer and look for the one that ends up in the second quadrant;
If we do a reflection over the y-axis and then a 90 degree clockwise rotation about the origin we end up in the fourth quadrant.
If we do a reflection over the x-axis and then a 90 degree counterclockwise rotation about the origin we also end up in the fourth quadrant.
If we do a reflection over the x-axis and then a reflection over the y-axis we also end up in the fourth quadrant.
The third answer is the only one that yields a transformation which leads back to the original position.
9514 1404 393
Answer:
C. (-4, -3)
Step-by-step explanation:
The point where the lines cross is the solution to both equations. That point is in the third quadrant, where both coordinate values are negative.
The x-coordinate of the point is listed first, so the solution is ...
(x, y) = (-4, -3)