Step-by-step explanation:
1. Use the Pythagorean theorem to solve for side KM:
- 16^2+KM^2=34^2
- 256+KM^2=1156
- KM^2=900
- KM=30
2. Cosine is adjacent over hypotenuse, so cosine of M would be KM/34, or 30/34
3. Tangent is opposite over adjacent, so tangent of L will be KM/16, or 30/16
4. Sine is opposite over hypotenuse, so sine of M will be 16/34
5. KM=30, solved for in step 1.
hope this helps!!
Don’t know the answer nor the explanation ! Same situation as of yours !
Answer:
YES
NO
NO
Step-by-step explanation:
The given polynomial is: 
(x - a) is a factor of a polynomial iff x = a is a solution to the polynomial.
To check if (x - 5) is a factor of the polynomial f(x), we substitute x = 5 and check if it satisfies the equation.
∴ f(5) = 5³ + 4(5)² - 25(5) - 100
= 125 + 100 - 125 - 100
= 225 - 225
= 0
We see, x = 5 satisfies f(x). So, (x - 5) is a factor to the polynomial.
Now, to check (x + 2) is a factor.
i.e., to check x = - 2 satisfies f(x) or not.
f(-2) = (-2)³ + 4(-2)² - 25(-2) - 100
= -8 + 16 + 50 - 100
= -108 + 66
≠ 0
Therefore, (x + 2) is not a factor of f(x).
To check (x - 4) is a factor.
∴ f(4) = 4³ + 4(4)² - 25(4) - 100
= 64 + 64 - 100 - 100
= 128 - 200
≠ 0
Therefore, (x - 4) is not a factor of f(x).
<span>f(x)=2x+5
then
</span><span>f(4)=2(4) +5 = 8 + 5 = 13
hope it helps</span>
Using statistical concepts, it is found that the number of outcomes that are possible for the complement of the union of Events J and K is of 43.
<h3>What is the union of events J and K?</h3>
It means that at least one of event J or event K is true, hence, it is composed by employees that are either considered support staff(less than 5 years of experience) or employees that have more than five years of experience, combining a total of 7 + 8 = 15 employees.
<h3>What is the complement?</h3>
The total number of outcomes of the union of J and K, plus the complement, add to the total number of 58, hence:
15 + x = 58
x = 43.
The number of outcomes that are possible for the complement of the union of Events J and K is of 43.
More can be learned about complementary events at brainly.com/question/9752956