The answer is 4 square root 80
Answer:
-2; Inferior good
Step-by-step explanation:
Given that,
Initial Quantity = 10 boxes
New Quantity = 8 boxes
Percentage increase in Sally's income = 10%
Change in consumption:
= 8 boxes - 10 boxes
= - 2 boxes
Percentage change in quantity demanded:
= (Change in quantity demanded ÷ Initial quantity) × 100
= (-2 ÷ 10) × 100
= - 20%
Therefore,
Income elasticity of demand:
= percentage change in quantity demanded ÷ Percentage change in income
= - 20% ÷ 10
= -2
Inferior goods are generally have a negative income elasticity of demand which means that an increase in the income of the consumer will lead to reduce the quantity demanded for inferior good and vice versa.
Hence, the good is a inferior type of good.
Answer:
Number of trees not marked is 6
Step-by-step explanation:
Base on the scenario been described in the question, we can find the solution in the file attached
To find the area of a prism, you calculate the area of the cross-section and multiply that number by the length. The cross-section of this prism is a trapezium, and the formula for this is

.
Insert your given numbers to find out the area of this prism's cross-section:

Now, multiply 90 by the length, 10cm, to find out the volume of the prism;
90×10=900cm³
Therefore, your answer id the third option.
First of all, you have to understand

<span> is a square-root function.
</span>Square-root functions are continuous across their entire domain, and their domain is all real x-<span>values for which the expression within the square-root is non-negative.
</span>
In other words, for any square-root function

and any input

in the domain of

(except for its endpoint), we know that this equality holds:
Let's take

<span>as an example.
</span>
The domain of

is all real numbers such that

. Since

is the endpoint of the domain, the two-sided limit at that point doesn't exist (you can't approach

<span>from the left).
</span>
<span>However, continuity at an endpoint only demands that the one-sided limit is equal to the function's value:
</span>
In conclusion, the equality

holds for any square-root function

and any real number

in the domain of

e<span>xcept for its endpoint, where the two-sided limit should be replaced with a one-sided limit. </span>
The input

, is within the domain of

<span>.
</span>
Therefore, in order to find

we can simply evaluate

at

<span>.
</span>