Answer:
x = π/2 + πk
Step-by-step explanation:
cot² x csc² x + 2 csc² x − cot² x = 2
Multiply both sides by sin² x:
cot² x + 2 − cos² x = 2 sin² x
Add cos² x to both sides:
cot² x + 2 = 2 sin² x + cos² x
Pythagorean identity:
cot² x + 2 = sin² x + 1
Subtract 1 from both sides:
cot² x + 1 = sin² x
Pythagorean identity:
csc² x = sin² x
Multiply both sides by sin² x:
1 = sin⁴ x
Take the fourth root:
sin x = ±1
Solve for x:
x = π/2 + 2πk, 3π/2 + 2πk
Which simplifies to:
x = π/2 + πk
Answer:
The inquality is always false i think..
Step-by-step explanation:
Answer:19.3
Step-by-step explanation:
96+28=124
6x+8=124
124-8=116
6x=116
116/6
x=19.3
Answer:
Step-by-step explanation:
Begin the solution by squaring both sides of the given equation. We get:
(3x - 4)^2 = 2x^2 - 2x + 2, or:
9x^2 - 24x + 16 = 2x ^2 - 2x + 2
Combining like terms results in:
7x^2 - 22x + 14 = 0
and the coefficients are a = 7, b = -22, c = 14, so that the discriminant of the quadratic formula, b^2 - 4ac becomes (-22)^2 - 4(7)(14) = 92
According to the quadratic formula, the solutions are
-b ± √discriminant -(-22) ± √92 22 ± √92
x = ------------------------------- = ----------------------- = ------------------------
2a 14 14
$3.9584067435 which would be $3.96 rounded to the nearest penny