B. by the sharing of electrons
Answer choices A and C are incorrect because covalent bonds form as a result of electrons (protons are kind of irrelevant). Answer choice D is incorrect because it describes an ionic bond.
Further study topics: water polarity, hydrogen bonds, free radicals, valence electrons, and more!
Recombination is the method by which organisms can randomly assort their genotypes amongst each other to create offspring with a different haplotype than either of its parents. This can be done by either copying sequences from one homologous chromosome to another (no physical exchange) or crossing over (physical exchange.
Crossing over is a mechanism in eukaryotes by which recombination can occur, in which the two homologous chromosomes contributed by both parents literally cross over and break at certain points to exchange certain sections of the chromosomes amongst each together.
Self fertilizing organisms typically do not produce offspring that are genetically identical. However, this has an inbreeding effect on its offspring, since it is recombining from the same genotype and so has a higher chance of producing homozygous offspring. This is very detrimental for mammals and some eukaryotes, but in some other organisms such as bacteria, homozygosity is typically not an issue.
A sample is termed REPRESENTATIVE SAMPLE if it has similar characteristics to the population being studied.
The representativeness of a sample is the extent to which its characteristics accurately reflects the characteristics of the population being studied.
Answer:
38
Explanation:
In eukaryotic cells, the maximum production of ATP molecules generated per glucose molecule during cellular respiration is 38, i.e., 2 ATP molecules from glycolysis, 2 ATP molecules from the Krebs cycle, and 34 ATP molecules from the Electron Transport Chain (ETC). <em>In vivo</em> (i.e., in the cell), this number is not reached because there is an energy cost associated with the movement of pyruvate (CH3COCOO−) and adenosine diphosphate (ADP) into the mitochondrial matrix, thereby the predicted yield is approximately 30 ATP molecules per glucose molecule. In aerobic bacteria, aerobic respiration of glucose occurs in the cytoplasm (since bacteria do not contain membrane-bound organelles such as mitochondria), and thereby, in this case, it is expected that aerobic respiration using glucose yields 38 ATP per glucose molecule.